A geological and petrological study of the dikes in the Megalo Vouno volcano complex, Santorini

Et geologisk og petrologisk studie af gangene i Megalo Vouno vulkankomplekset, Santorini

Appendices

Anne Dorthe Juul Petersen

Appendices

Table of contents

А	Dike p	photos	. I
В	Labor	atory procedures (Isotope geochemistry)	XII
С	Analy	tical uncertainty	XVI
Table	C1	Major elements	XVI
Table	C2	Trace elements by XRF	XVII
Table	C3	Trace elements by ICP-MS	XVII
Table	C4	Nd and Sr isotopes	XVIII
Table	C5	Pb isotopes	XXII
D	Petrog	graphic photos	XXIII
Е	Geoch	nemical data	XXV
Table	E1	Major element, trace element and isotopic analyses of dikes	XXV
Table	E2	Major element and trace element plus new ICP-MS and isotopic analyses	
		of data from Hansen (1997)	XXX
Table	E3	Analytical methods	XXXI
Table	E4	CIPW norm calculations	XXXII
Table	E5a	Data used in pseudo-ternary plots dikes	XXXIII
Table	E5b	Data used in pseudo-ternary plots trend 1 and 2 from Hansen (1997)	XLI
Table	E6	MORB normalisation plus datasets and references from other volcanic arcs	XLII
Table	E7	CI normalisation plus datasets and references from other volcanic arcs	XLIII
Table	E8	MORB normalisation plus datasets and references from Santorini	XLIV

+ CD-ROM with thesis in PDF

Appendix A Dike photos

Photos and descriptions of dikes collected for this thesis.

MVD-T 00-01

Width: 15-50 cm Strike: 7-20°N Lat: N 36°27.795

Lat: N 36°27.795 Long: E 25°24.491

MVD-T 01-02

Width: 20 cm Strike: 10°N Lat: N 36°27.774 Long: E 25°24.458

MVD-T 00-03

Width: 40-70 cm Strike: 11-14°N Lat: N 36°27.759 Lor

Long: E 25°24.430

MVD-T 00-04

Width: 50-100 cm Strike: 22°N Lat: N 36°27.709 Long: E 25°24.237

MVD-T 01-05

Width: 30-100 cm Strike: 3°N Lat: N 36°27.701 Long: E 25°24.190

MVD-T 01-06

Width: 30-70 cm Strike: 357°N Lat: N 36°27.708 Long: E 25°24.179

Width: 50-80 cm Strike: N-S Lat: N 36°27.700 Long: E 25°24.114

MVD-T 01-08

Width: 40 cm Strike: 357-3°N Lat: N 36°27.602 Long: E 25°23.790

MVD-T 00-09

Width: 120 cm Strike: 18-24°N Lat: N 36°27.859 Long: E 25°24.244

Width: 40 cm Strike: 22°N Lat: N 36°27.793 Long: E 25°24.224

MVD-T 00-11 & MVD-T 00-12

Width: 100-200 cm Width: 80 cm Strike: 2-5°N Lat: N 36°27.809 Long: E 25°24.187

Strike: 3-5°N Lat: N 36°27.777 Long: E 25°24.168

MVD-B 00-13 & MVD-B 00-14

Width: 80-100 cmWidth: 80-100 cmStrike: N/AStrike: N/ALat: N 36°27.489Lat: N 36°27.470Long: E 25°23.739Long: E 25°23.752

MVD-B 00-15

Width: 100-150 cm Strike: 17-28°N Lat: N 36°27.455 Long: E 25°23.778

MVD-B 01-16

Width: 400-500 cm Strike: 15°N Lat: N 36°27.466 Long: E 25°23.830

Width: 200-400 cm Strike: 322°N Lat: N 36°27.466 Long: E 25°23.854

MVD-B 01-18

Width: 50 cm Strike: 22°N Lat: N 36°27.456 Long: E 25°23.865

MVD-B 01-19

Width: 20-40 cm Strike: 24°N Lat: N 36°27.457 Long: E 25°23.875

Width: 100 cm Strike: 338°N Lat: N 36°27.440 Long: E 25°23.923

MVD-B 01-21

Width: 300-350 cm Strike: 26°N Lat: N 36°27.461 Long: E 25°23.998

MVD-B 01-22

Width: 150 cm Strike: 320°N Lat: N 36°27.490 Long: E 25°24.014

Width: 150-180 cm Strike: 320°N Lat: N 36°27.479 Long: E 25°24.060

MVD-B 01-24

Width: 100-250 cm Strike: 358°N Lat: N 36°27.487 Long: E 25°24.061

MVD-B 01-25

Width: 400 cm Strike: 28°N Lat: N 36°27.486 Long: E 25°24.066

Width: 250-300 cm Strike: 18°N Lat: N 36°27.486 Long: E 25°24.081

MVD-B 01-27

Width: 15-40 cm Strike: 24°N Lat: N 36°27.485 Long: E 25°24.093

MVD-B 01-28

Width: 30-60 cm Strike: 25°N Lat: N 36°27.513 Long: E 25°24.108

Width: 500-800 cm Strike: 6°N Lat: N 36°27.515 Long: E 25°24.153

MVD-B 01-30

Width: 200 cm Strike: 356°N Lat: N 36°27.528 Long: E 25°24.185

Width: 70-80 cm Strike: 358°N Lat: N 36°27.590 Long: E 25°24.619

MVD-B 00-32

Width: 300 cm Strike: 6-12°N Lat: N 36°27.596 Lon

596 Long: E 25°24.633

MVD-B 00-33 & MVD-B 00-34

Width: 300 cmWidth: 300-400 cmStrike: 6-12°NStrike: 4°NLat: N 36°27.597Lat: N 36°27.593Long: E 25°24.634Long: E 25°24.636

MVD-B 00-35

Width: 800-1000 cm Strike: N/A Lat: N 36°27.590 Long: E 25°24.687

MVD-B 00-36

Width: 60 cm Strike: 350°N Lat: N 36°27.573 Long: E 25°24.728

Appendix B Laboratory procedures (Isotope geochemistry)

Laboratory procedure Sr (and part I Nd)

Preparation of sample powders:

Weighing (ca. 200-300 mg whole-rock silicate powder)
Samples are added 1 ml HBr per 100 mg silicate powder, Savilex beakers are closed and samples react with acid on hot plate for 1-2 days
Beakers are opened and samples evaporate overnight
Samples are added 2 ml HF and 1 ml HNO₃ per 100 mg silicate powder, beakers are closed and samples react with the acids on hot plate for two nights
Beakers are opened and samples evaporate overnight
Samples are added 2 ml 6M HCl, beakers are closed and placed in ultrasonic bath for 10 minutes. Closed beakers are then placed on hot plates for about two hours
Beakers are opened and samples evaporate on hot plate overnight

Chemistry:

Sample preparation: Samples are added 1 ml 2M HCl and put in ultrasonic bath for five minutes Samples are added to centrifuge columns and centrifuged for twenty minutes

Column preparation: Wash with 5 ml 2M HCl

Collection: Samples are added to columns Wash with 2 x 1 ml 2M HCl Wash with 30 ml 2M HCl Sr is collected with 10 ml 2M HCl

Hereafter collection of Nd resumes, followed by final cleaning of columns and preparation for the next user (see Nd procedure below)

The collected Sr is placed on hot plates in open beakers for evaporation, so that samples can proceed through further cleansing on Sr-Spec. columns the following day

Sr-Spec .:

Chemistry: Sample preparation: Samples are added 7 drops of 3M HNO₃ and put in ultrasonic bath for ca. five minutes

Column preparation: The empty columns are carefully filled with Sr-Spec until the resin sits just below the reservoir Wash with filled reservoir MQ H₂O Wash with filled reservoir MQ H₂O Wash with filled reservoir 3M HNO₃ Wash with filled reservoir 3M HNO₃ Wash with filled reservoir MQ H₂O Calibration with $\frac{1}{2}$ reservoir 3M HNO₃

Collection: Samples are added to columns Wash with 5 drops 3M HNO₃ Wash with 2 x 15 drops 3M HNO₃ Sr is collected with 30 drops of MQ H₂O The collected Sr is placed on hot plate for evaporation, and is subsequently ready for analysis on TIMS (Thermal Ionization Mass Spectrometre)

Laboratory procedure Nd

First part of the Nd procedure (collection of REE) is carried out in Sr-lab after Sr separation on the same columns (see above)

Chemistry part I (in Sr-lab):

After collection of Sr: Wash with 5 ml MQ H₂O Ba clean-up with 30 ml 2M HNO₃ Wash with 5 ml MQ H₂O REE is collected with 10 ml 6M HCl

The collected REE is placed on hot plate for evaporation overnight

Cleaning/preparation for next user:

Columns are prepared for the next user by cleaning with 1 reservoir QD 6M HCl

The resin in the Sr (and Nd) columns is re-used and is therefore pumped up with an electrical pump adding MQ H_2O . When the resin has re-settled the columns are cleaned with $\frac{1}{2}$ reservoir 2M HCl and when only 1/5 is left in the reservoir, clips are put on the columns and they are ready for the next user.

Second part of the Nd procedure is carried out in Nd-lab:

Chemistry part II: (in Nd-lab):

Sample preparation: Each sample is added 0.3 ml 0.25M HCl and placed in ultrasonic bath for 5-10 minutes

Column preparation: The columns, which already contain resin, are taken from a container with dilute acid, placed in a rack and excess acid is allowed to drip off Wash with 5 ml 0.25M HCl

Collection: Samples are added to columns Wash with 0.3 ml 0.25M HCl Wash with 2 x 1 ml 0.25M HCl Wash with 13 ml 0.25M HCl Nd is collected with 14 ml 0.25M HCl

Cleaning: ½ reservoir QD 2M HCl ½ reservoir 0.25M HCl

Finally the clean columns are carefully replaced in their container with dilute acid (0.25M HCl)

The collected Nd is placed on hot plate for evaporation and is then ready for analysis on TIMS

Laboratory procedure Pb

Preparation of sample powders:

Weighing (ca. 100 mg whole-rock silicate powder) Samples are added 1 ml HBr and closed beakers are placed on hot plate 1-2 nights Beakers are opened and samples evaporate overnight

Samples are added 2 ml HF and ½ ml HNO₃ and closed beakers are left to react on hot plates for two nights *Beakers are opened and samples evaporate overnight*

Chemistry:

Sample preparation: Samples are added 1 ml 1.5M HBr:2M HCl = 12:1 mix and placed in ultrasonic bath for five minutes

Column preparation: The empty columns are filled with AG 1x8 100-200 mesh until the resin sits just below the reservoir Wash with $\frac{1}{2}$ reservoir MQ H₂O Wash with $\frac{3}{4}$ reservoir QD 8M HCl Wash with $\frac{3}{4}$ reservoir MQ H₂O Wash with $\frac{1}{2}$ reservoir MQ H₂O Wash with $\frac{1}{4}$ reservoir 1.5M HBr:2M HCl = 12:1 mix

Collection:

Samples are added to columns, 1 ml Wash with 1 reservoir 1M HBr Wash with 1 reservoir 2M HCl Pb is collected with two reservoirs 2M HCl

The collected Pb is removed and beakers are placed open on hot plates for evaporation, so that samples can go on mini columns (Pb-Th-U aliquots) the following day

Pb mini columns (aliquots):

Chemistry:

Sample preparation: Samples are added 300 μl (7-9 drops) 1.5M HBr:2M HCl = 12:1 mix and placed in ultrasonic bath for five minutes

Column preparation: The empty columns are filled with AG 1x8 100-200 mesh until the resin sits just below the reservoir Wash with $\frac{1}{2}$ reservoir MQ H₂O Wash with $\frac{3}{4}$ reservoir QD 8M HCl Wash with $\frac{3}{4}$ reservoir QD 8M HCl Wash with $\frac{1}{2}$ reservoir MQ H₂O Wash with $\frac{1}{4}$ reservoir 1.5M HBr:2M HCl = 12:1 mix

Collection: Samples are added to columns, 300 µl Wash with 1 reservoir 1M HBr Wash with 1 reservoir 2M HCl Pb is collected with two reservoirs 8M HCl

The collected Pb is placed on hot plate for evaporation and is then ready for analysis on TIMS

 $\label{eq:cleaning:} Cleaning: \\ Columns are emptied of resin (not re-used) and thoroughly cleaned in MQ H_2O$

IMPORTANT: Students are not allowed to work with hydroflouric acid on their own. At all times a laborant has to be present, and the student must carry protection glasses, plastic apron and two pairs of rubber gloves. All beakers are taken to TIMS where samples are loaded on filaments using the procedures described below. As soon as Savilex beakers have been emptied, labels should be removed and the beakers must be thoroughly cleaned in MQ H_2O and placed for acid cleaning in the chemistry laboratory.

Laboratory procedure **TIMS**

Students construct their own filaments for both samples and standards. This is done by welding a thin band of either Re or Ta on the pre-cleaned filaments (re-usable).

Sr:	One Ta centre filament per sample	(+ extra for standards)
Nd:	One Re c'entre filament per sample One Ta outer (side) filament per sample One Ta iriner (side) filament per sample	(+ extra for standards) (+ extra for standards) (+ extra for standards)
Pb:	One Re centre filament per sample	(+ extra for standards)

The filaments are outgassed under pressure (2 x 10^{-7} mbar) for app. 4 hours and set aside for some days, preferably at least a week

Sample loading on filaments:

Filaments are placed in a stand connected to a power supply and placed under a microscope

Sr:

Samples are loaded on Ta centre filaments together with $2 \mu l \ 1M H_3PO_4$ (used to dissolve sample). $2 \mu l$ activator Ta_2O_5 is also added to the filament to help with ionization

On a separate filament 2 μ l standard NBS987 is loaded together with 2 μ l 1M H₃PO₄ and 2 μ l activator Ta₂O₅ Each filament is heated with 2 A until the sample begins to smoke, then it is heated further until is stops smoking.

Nd:

Samples are loaded onto the outer side filament, while the centre filament and inner side filament remain empty. The sample is loaded with 2 μ l HCl (0.2M HCl) but take time to dissolve, so one must be careful not to load solid rock. The standard JM/Nd (235 mg/ μ l) is already dissolved and can be loaded directly. Filaments are heated at 1.5-2 A until the samples are dry.

<u>Pb:</u>

2 µl silicagel is loaded on the Re centre filament and samples are loaded together with 2 µl 1M H₃PO₄.

On a separate filament 2 μ l of the standard NBS981 is loaded together with 2 μ l 1M H₃PO₄

Silica gel and phosphoric acid makes the sample stick (the standard itself is dissolved in a little acid which is not enough to make it stick)

Each filament is heated with 1.5 A until the sample turns sticky. Heating is continued until the sample starts smoking and must be stopped immediately after the smoking stops preferably after a light orange glow to make sure that all organic material has oxidized, which is not possible in the vacuum chamber. Organic material will show up on all masses if this is not done properly.

Re filaments are used for Pb because these usually are much smaller samples than e.g. Sr. The Re helps with ionization much better than Ta filaments.

After this process filaments are ready to be mounted on turrets along with slit plates. Twenty samples at a time can be analysed on the TIMS (e.g. one standard + nineteen samples)

Appendix C Analytical uncertainty

Precision is the reproducibility of an analysis based on repeated analysis of a sample or international standard; LLD is the lower limit of detection, and accuracy is a measure of the closeness to the réal value Based on analysis of international standards (e.g. average distance of points from a regression line through standards).

Major elements

Major element precision (1s), detection limit and accuracy are given in wt.% (Kystol & Larsen, 1999) in Table C1.

Element	Precision (1s) wt.%	LLD wt.%	Accuracy std. error wt.%
SiO ₂	0.15	0.3	0.24
TiO ₂	0.015	0.03	0.033
Al ₂ O ₃	0.05	0.1	0.24
Fe ₂ O ₃	0.1	0.2	0.21
FeO	0.1	0.2	0.13
MnO	0.003	0.005	0.005
MgO	0.05	0.1	0.09
CaO	0.03	0.05	0.07
Na ₂ O	0.05	0.08	0.06
K ₂ O	0.005	0.01	0.038
P ₂ O ₅	0.005	0.01	0.014
Volatiles	0.10	-	-

Table C1. Precision (1s), lower limit of detection (LLD) and accuracy for major elements analysed by XRF (Fe_2O_3 , Na_2O and volatiles are analysed as described in Section 5.2). Data from Kystol & Larsen (1999).

Trace elements (XRF)

Trace element precision and detection limit for XRF analysis of trace elements are given in Table C2. The precision depends on the concentration of each element. Only intervals in which samples from this study are present have been listed in the table.

Floment	Interval	Precision	Interval	Precision	Interval	Precision	Detection
Element	(ppm)	±%	(ppm)	±%	(ppm)	±%	limit (ppm)
Nb	1-5	10	5-20	5			<0.5
Zr	50-500	2					<1
Sr	20-500	2					<0.5
Rb	5-20	5	20-500	2			<0.5
Zn	50-1000	2					<1
Ni	2-20	10	20-50	5	50-200	2	<1
Cu	5-20	10	20-50	5	50-1000	2	<2
Pb	2-10	20	10-50	10			<1
Ga	10-50	5					<1
v	10-50	10	50-200	5	200-1000	2	<3
Cr	10-50	10	50-200	5			<3
Sc	10-50	5					<1
Co	5-20	10	20-50	4			<1
Ba	50-500	2	500-5000	1			<1
Cl	1-100	10	100-1000	2			<10
S	1-100	10	100-1000	2			<10

Table C2. Trace element precision $(\pm\%)$ and detection limit for trace elements analysed by XRF. Data supplied by laboratory leader John Bailey (pers. comm.).

Trace elements (ICP-MS)

Trace element precision and detection limit for ICP-MS analysis of trace elements are given in Table C3.

Table C3. Precision and detection limit for trace elements analysed by ICP-MS. Data supplied by laboratory leader Jørgen Kystol (pers. comm.).

Element	Precision (1s rel.)	Detection limit	Element	Precision (1s rel.)	Detection limit
Y	2.8	0.015 ppm	Dy	5.0	0.007 ppm
Cs	9.2	0.001 ppm	Но	5.5	0.002 ppm
La	4.3	0.12 ppm	Er	5.2	0.003 ppm
Ce	3.5	0.04 ppm	Tm	4.9	0.0005 ppm
Pr	6.1	0.006 ppm	Yb	5.1	0.003 ppm
Nd	6.3	0.02 ppm	Lu	6.1	0.002 ppm
Sm	6.4	0.007 ppm	Hf	6.1	0.01 ppm
Eu	4.9	0.002 ppm	Та	5.9	0.015 ppm
Gd	5.7	0.004 ppm	Th	31.5	0.2 ppm
Tb	4.9	0.001 ppm	U	8.7	0.05 ppm

Isotopes (TIMS)

Because of limited access to laboratories due to rebuilding of the Geological Institute it was only possible to analyse a fixed number of samples and no samples could be analysed more than once. This means that possible analytical errors were not checked, since no duplicate analyses were performed.

Sr and Nd isotopes

The uncertainties are expressed by the reproducibility of international standards, because within-run precision (Table C4) generally is insignificant compared to the reproducibility of the reference materials.

Table C4. Nd and Sr isotope analyses with uncertainties $(\pm 2s)$. Within-run precision of each sample is given in brackets $(\pm 2s \text{ absolute})$. Analyses were performed on fourteen dikes and six lavas from the Megalo Vouno volcano complex.

Sample	¹⁴³ Nd/ ¹⁴⁴ Nd	±2s	⁸⁷ Sr/ ⁸⁶ Sr	±2s
MVD-T 00-01	0.512844	0.000022 [0.000012]	0.703783	0.000019 [0.000014]
MVD-T 01-06	0.512826	0.000022 [0.000013]	0.704345	0.000019 [0.000017]
MVD-T 00-07	0.512784	0.000022 [0.000018]	0.704225	0.000019 [0.000017]
MVD-T 01-08	0.512788	0.000022 [0.000008]	0.704544	0.000019 [0.000008]
MVD-T 00-10	0.512751	0.000065 [0.000065]	0.703656	0.000019 [0.000017]
MVD-B 00-15	0.512740	0.000022 [0.000008]	0.704880	0.000019 [0.000011]
MVD-B 01-18	0.512833	0.000022 [0.000009]	0.704056	0.000019 [0.000017]
MVD-B 01-20	0.512785	0.000030 [0.000030]	0.705046	0.000019 [0.000013]
MVD-B 01-21	0.512799	0.000022 [0.000008]	0.705037	0.000019 [0.000016]
MVD-B 01-22	0.512558	0.000022 [0.000013]	0.707115	0.000019 [0.000018]
MVD-B 01-23	0.512558	0.000022 [0.000017]	0.706043	0.000024 [0.000024]
MVD-B 01-24	0.512711	0.000022 [0.000006]	0.704538	0.000019 [0.000011]
MVD-B 01-25	0.512700	0.000022 [0.000009]	0.705004	0.000019 [0.000017]
MVD-B 00-32	0.512711	0.000022 [0.000012]	0.704912	0.000019 [0.000013]
MV-B 01-38	0.512645	0.000022 [0.000009]	0.705029	0.000019 [0.000016]
MV 104	0.512613	0.000022 [0.000008]	0.705625	0.000021 [0.000021]
MV 108	0.512523	0.000022 [0.000008]	0.706172	0.000019 [0.000011]
MV 109	0.512531	0.000022 [0.000008]	0.706376	0.000028 [0.000028]
MV 110	0.512566	0.000022 [0.000009]	0.705658	0.000019 [0.000011]
MV 115	0.512636	0.000022 [0.000007]	0.704693	0.000019 [0.000013]

During the time of analysis, only two standards were measured (for each of the three elements). To get a better expression of the reproducibility of the standards, Professor Robert Frei recommended using all Nd standards measured in the laboratory in 2001 and 2002 (twenty in all) and all measured Sr standards in 2002 (thirty-two in all). The only problem when doing so

is that another uncertainty can arise because different people using slightly different techniques have produced the standards:

Isotopic ratio	Standard	Average	$\pm 2s$ (absolute)	No. of analyses
142 144				
$^{143}Nd/^{144}Nd$	JM Nd	0.511102	0.000022	20
87 Sr/ 86 Sr	NBS 987	0.710236	0.000019	32

One of the most important errors in mass spectrometry results from the tendency of the lighter isotopes to evaporate more readily than the heavier isotopes. During analysis the sample will become increasingly depleted in light isotopes and the ratio of a light isotope to a heavy one will continually decrease. A correction can be made, however, by normalising to a ratio between two isotopes that are not radiogenic. Sr was normalised to 86 Sr/ 88 Sr = 0.1194 and the internal JM Nd standard was referenced against La Jolla and normalised to 146 Nd/ 144 Nd = 0.7219.

Pb isotopes

The NBS 981 Pb standard was measured twenty-two times in 2002, resulting in the following data:

Isotopic ratio	Standard	Average	$\pm 2s$ (absolute)	No. of analyses
206 /204		16,000	0.010	22
Pb/- Pb	NBS 981	16.900	0.012	22
207 Pb/ 204 Pb	NBS 981	15.445	0.014	22
²⁰⁸ Pb/ ²⁰⁴ Pb	NBS 981	36.554	0.044	22

Of the four naturally occurring Pb isotopes, only ²⁰⁴Pb is not a product of decay of U or Th. As a consequence, there is no constant isotope ratio, so Pb cannot be corrected for mass fractionation during analysis and must be corrected manually afterwards. The samples were thus corrected using the values of Todt et al. (1984) and the calculated 2s values are given in Table C5. The fractionation amounted to $0.00105 \pm 0.00006/\text{amu}$ (atomic mass unit) (2s; n = 22) resulting in 2s values between:

²⁰⁶Pb/²⁰⁴Pb: 0.007-0.037 (0.099)

²⁰⁷Pb/²⁰⁴Pb: 0.006-0.031 (0.083)

²⁰⁸Pb/²⁰⁴Pb: 0.017-0.078 (0.206)

The numbers in brackets are the results of sample MVD-T 01-08, which is the only sample that should be excluded due to the poor uncertainty.

Analytical problems

With Sr and Nd the precision was in a few cases poorer than the reproducibility of the standard as a consequence of machine difficulties (e.g. too low ion beam intensity to proceed with sample or maximum filament current was reached and sample was aborted). As a consequence the within-run precision was listed in Table C4 as the 2s uncertainty instead of the better value obtained for the standard.

For Sr: three samples (MVD-B 01-23, MV104 and MV109) exceed the uncertainty of 0.000019 produced by the standards, but since the highest is 0.000028 all three samples have been used for the rest of the study.

For Nd: two samples (MVD-T 00-10 and MVD-B 01-20) exceed the uncertainty of 0.000022 produced by the standards. The latter is only slightly higher but the former is 0.000065 and must be used carefully. This is shown graphically below (Fig. C1).

For Pb: the uncertainty of sample MVD-T 01-08 is too poor to be considered a good analysis. However, since there was no chance of making a new analysis and because there are so few samples available, the sample has been used throughout the diagrams but care was taken to avoid using this sample when interpreting processes.

The 2s error is represented with error ellipses on Pb isotope diagrams. These have been calculated and plotted using the program Isoplot By Ludwig (2003). Data are listed in Table C5 and error ellipses are shown in Figs. C2 and C3.

Graphical presentation of errors

On the individual isotope diagrams (Section 7.9) only a single error ellipse or error cross has been plotted for ease of reading.

To show a graphical presentation of error, error ellipses (2s) and error crosses (2s) have been plotted in Figs. C1, C2 and C3, so that the diagrams can be readily compared to the diagrams in Section 7.9.

Fig. C2. ²⁰⁷Pb/²⁰⁴Pb versus ²⁰⁶Pb/²⁰⁴Pb plot showing error ellipses on 14 Megalo Vouno dike samples, one lava flow from Peristeria volcano and five lava flows from the top of Megalo Vouno. Data-point error ellipses are 2s.

Fig. C3. 208 Pb/ 204 Pb versus 206 Pb/ 204 Pb plot showing error ellipses on 14 Megalo Vouno dike samples, one lava flow from Peristeria volcano and five lava flows from the top of Megalo Vouno. Data-point error ellipses are 2s.

Table C5. Pb	isotopic d	ata of 14 dikes	and six l	lavas from the 1	Megalo '	Vouno volcano	comple	ý					
Sample	Phase ^a	^{a 206} Pb/ ²⁰⁴ Pb	±2σ ^b	²⁰⁷ Pb/ ²⁰⁴ Pb	±2σ ^b	²⁰⁸ Pb/ ²⁰⁴ Pb	±2σ ^b	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ ^b	²⁰⁸ Pb/ ²⁰⁶ Pb	±2σ ^b	÷	r ₂ #
MVD-T 00-01	Whr	18.917	0.029	15.652	0.025	38.884	0.062	0.8274	0.0002	2.0555	0.0007	0.982	0.977
MVD-T 01-06	Whr	18.891	0.025	15.669	0.021	39.064	0.052	0.8294	0.0002	2.0679	0.0005	0.980	0.983
MVD-T 00-07	Whr	18.914	0.020	15.679	0.017	38.964	0.044	0.8290	0.0002	2.0601	0.0009	0.965	0.919
MVD-T 01-08	Whr	18.873	0.099	15.654	0.083	39.084	0.206	0.8294	0.0006	2.0709	0.0011	0.992	0.995
MVD-T 00-10	Whr	18.992	0.034	15.639	0.029	39.048	0.072	0.8235	0.0002	2.0561	0.0006	0.988	0.988
MVD-B 00-15	Whr	18.906	0.027	15.671	0.023	38.989	0.057	0.8289	0.0002	2.0623	0.0007	0.981	0.976
MVD-B 01-18	Whr	18.927	0.031	15.660	0.026	39.012	0.065	0.8274	0.0002	2.0612	0.0007	0.985	0.981
MVD-B 01-20	Whr	18.910	0.037	15.656	0.031	38.971	0.078	0.8279	0.0002	2.0609	0.0007	0.990	0.986
MVD-B 01-21	Whr	18.876	0.019	15.640	0.016	38.848	0.040	0.8286	0.0002	2.0581	0.0004	0.972	0.978
MVD-B 01-22	Whr	18.901	0.008	15.673	0.007	38.940	0.020	0.8293	0.0001	2.0603	0.0005	0.956	0.891
MVD-B 01-23	Whr	18.896	0.007	15.674	0.006	38.940	0.017	0.8295	0.0001	2.0607	0.0003	0.961	0.948
MVD-B 01-24	Whr	18.895	0.008	15.664	0.007	38.916	0.019	0.8290	0.0001	2.0596	0.0003	0.959	0.950
MVD-B 01-25	Whr	18.859	0.018	15.673	0.016	38.940	0.039	0.8311	0.0002	2.0648	0.0005	0.975	0.974
MVD-B 00-32	Whr	18.892	0.009	15.667	0.008	38.910	0.021	0.8293	0.0001	2.0596	0.0003	0.958	0.959
MV-B 01-38	Whr	18.907	0.012	15.674	0.010	38.957	0.026	0.8290	0.0001	2.0605	0.0004	0.973	0.963
MV104	Whr	18.921	0.009	15.673	0.008	38.958	0.020	0.8284	0.0001	2.0590	0.0003	0.965	0.949
MV108	Whr	18.903	0.008	15.688	0.007	39.009	0.019	0.8299	0.0001	2.0636	0.0004	0.936	0.933
MV109	Whr	18.799	0.026	15.640	0.023	38.824	0.058	0.8320	0.0003	2.0652	0.0011	0.961	0.931
MV110	Whr	18.886	0.014	15.683	0.012	39.004	0.031	0.8304	0.0002	2.0652	0.0005	0.970	0.951
MV115	Whr	18.873	0.013	15.668	0.012	38.932	0.029	0.8302	0.0002	2.0628	0.0005	0.967	0.953
	a Whr = Who	tle rock											
	b Errors are to	wo standard deviatio	ons absolute	e (Ludwia, 2003).									
7	** r ₁ = ²⁰⁶ Pb/ ²	⁰⁴ Pb vs. ²⁰⁷ Pb/ ²⁰⁴ Pb) error corre	lation (Ludwig, 2003)	~								
+	$1 r_2 = {}^{206}Pb/^2$	^{:04} Pb vs. ²⁰⁷ Pb/ ²⁰⁴ Pt	o error corre	lation (Ludwig, 2003)	~								

Appendix D Petrographic photos

Fig. D1. Microphotographs of textures in the Megalo Vouno dikes.

(a) Intersertal groundmass texture (in plane polarized light PPL) (MVD-B 00-13); (b) Intergranular groundmass texture (PPL) (MVD-T 00-12); (c) Completely iddingsitized olivine in trachyandesite (PPL) (MVD-B 00-35); (d) Same olivine as in c, but with crossed nicols (MVD-B 00-35); (e) Irregular embayment in subhedral olivine phenocryst (MVD-B 01-25); (f) Resorbed olivine (MVD-T 01-08); (g) Typical, rounded olivine surrounded by trachytic texture (MVD-B 01-26); and (h) Partially serpentinized olivine phenocryst (MVD-B 01-20). Photos are ca. 1.6 mm across.

Fig. D2. Microphotographs of textures in the Megalo Vouno dikes.

(a) Oscillatory zoning in plagioclase (MVD-B 00-31); (b) Convolute zoning in plagioclase (MVD-T 00-12); (c) Plagioclase glomerocryst (MVD-B 00-32); (d) Glomerocryst composed of plagioclase and altered olivines (serpentinized) (MVD-B 01-20); (e) Olivine inclusion in spongy Carlsbad twinned plagioclase (MVD-B 01-18); (f) Clear plagioclases along with spongy plagioclases the upper having a spongy centre and the lower (to the left) having a spongy rim (MVD-T 00-04); (g) Melt inclusions in clinopyroxene giving it a spongy appearance (MVD-T 00-10); and (h) Colour zoning, giving the clinopyroxene a patchy appearance MVD-B 01-23). Photos are ca. 1.6 mm across.

Sample No.	MVD-T 00-01	MVD-T 01-02	MVD-T 00-03	MVD-T 00-04	MVD-T 01-05	MVD-T 01-06	MVD-T 00-07	MVD-T 01-08
TAS Classification	Basaltic andesite	Basalt	Andesite	Basalt				
Rock type	Dike	Dike	Dike	Dike	Dike	Subaikali basait	Dike	Subaikali basalt Dike
Nook type	Dike	Dike	Dike	Dike	Dire	Dike	Dike	Dike
Major elements (wt.%)								
SiO ₂	52.28	52.06	52.21	56.12	52.00	50.33	59.62	51.33
TiO ₂	0.779	0.785	0.843	0.856	0.890	0.784	1.10	0.897
Al ₂ O ₃	17.61	17.51	17.79	17.39	18.50	18.27	16.05	18.82
Fe ₂ O ₃	1.92	2.79	1.55	1.75	2.30	1.82	1.55	4.04
reO MpO	0.15	5.4Z 0.153	0.44	5.75	5.67 0.151	0.32	5.52 0.170	4.31
MaQ	6 45	6.55	6 17	4 27	5.80	7 46	2 26	5.90
CaO	10.76	10.72	10.81	8.35	9.97	10.80	5.68	10.10
Na ₂ O	2.63	2.61	2.71	3.26	2.95	2.60	4.00	2.86
K ₂ O	0.641	0.639	0.603	1.49	0.780	0.471	2.08	0.482
P ₂ O ₅	0.086	0.095	0.097	0.124	0.129	0.089	0.264	0.108
LOI	0.62	0.55	0.50	0.61	0.62	0.48	0.23	0.40
Sum	100.07	99.88	99.87	100.11	99.96	99.57	98.51	99.41
Fe ₂ O ₂	1 40	1 41	1.39	1.30	1 41	1 41	1 23	1 41
FeO corrected	6.62	6.67	6.58	6.15	6.67	6.68	5.81	6.68
FeO* (FeO _{total})	7.88	7.93	7.83	7.32	7.94	7.95	6.91	7.95
FeO*/MgO	1.22	1.21	1.27	1.71	1.37	1.07	3.06	1.35
$Fe_2O_3/(Fe_2O_3+FeO)$	0.24	0.34	0.19	0.23	0.28	0.22	0.22	0.48
Trace elements by XRF (ppm)	2.2	2.2	3.0	5.6	4.6	2.1	0.4	2.0
ND Zr	2.3 72.6	69.1	82.9	137 0	4.0 96.4	52.1	9.4 265 3	2.0 60.3
Sr	288.8	285.9	200.0	194.3	225.3	212.3	168.0	213.8
Rb	14.1	14.1	17.5	56.5	23.3	9.5	78.2	10.2
Zn	70.3	77.2	81.0	87.5	86.5	83.4	88.5	80.4
Ni	43.5	43.1	43.5	15.9	47.1	66.0	7.4	39.6
Cu	90.3	86.4	79.3	53.8	74.9	56.9	68.2	67.8
Pb O-	2.0	1.8	3.1	13.2	8.1	9.1	10.6	10.1
Ga	260.1	266.2	268.4	18.2 217.7	19.4 248.7	257.0	17.4	16.4 250.0
v Сr	85.0	79.9	97.6	10.1	53.3	80.5	14.6	62.6
Sc	39.8	40.4	41.4	27.9	32.9	34.4	23.8	32.3
Co	34.4	34.0	31.9	23.9	31.9	38.2	15.8	31.5
Ва	138.4	135.7	118.1	221.5	163.2	113.4	334.4	126.9
CI	360	250	400	740	510	370	610	260
S	80	80	410	130	240	150	390	70
Trace elements by ICB MS (nom	1							
Y	19.46	19.44	22.65	27.52		18.23	49.48	21.43
Cs	0.43	0.45	0.57	1.98		0.27	2.22	0.28
La	5.94	6.31	6.77	14.18		6.10	22.98	6.54
Ce	13.89	14.23	15.43	29.87		13.45	50.12	14.81
Pr	1.89	1.84	2.12	3.66		1.72	6.32	1.93
Nd	8.38	8.69	9.67	14.91		8.00	26.17	8.62
Fu	∠.งว ∩ ฅว	2.30 0.78	2.70 0.83	3.03 N QZ		2.23 0.74	0.03 1 42	∠.41 ∩ 85
Gd	2.91	2.75	3.09	4.10		2.47	7.28	3.00
Tb	0.51	0.49	0.58	0.72		0.46	1.28	0.54
Dy	3.28	3.21	3.64	4.48		3.03	7.88	3.46
Ho	0.66	0.68	0.79	0.97		0.63	1.70	0.73
Er	1.98	2.02	2.33	2.87		1.89	5.08	2.17
Tm	0.30	0.29	0.35	0.43		0.28	0.75	0.32
Yb	2.04	1.92	2.32	2.86		1.87	5.05	2.17
Lu Hf	0.29	0.30	0.35	U.44 3 82		0.28 1.54	U.70 719	0.32
Та	0.19	0.15	0.15	0.35		0.18	0.51	0.21
Th	2.65	2.39	3.18	9.61		1.46	14.78	1.95
U	0.72	0.74	0.89	3.00		0.42	4.39	0.49
Isotope analyses by TIMS								
°'Sr/°°Sr	0.703783					0.704345	0.704225	0.704544
¹⁴³ Nd/ ¹⁴⁴ Nd	0.512844					0.512826	0.512784	0.512788
²⁰⁶ Pb/ ²⁰⁴ Pb	18.917					18.891	18.914	18.873
²⁰⁷ Pb/ ²⁰⁴ Pb	15.652					15.669	15.679	15.654
²⁰⁸ Pb/ ²⁰⁴ Pb	38 884					39 064	38 964	39 084
	00.004					00.004	JJ.JUT	00.004

Table E1. Major element, trace element and isotopic analyses of samples from the Megalo Vouno volcano complex.

Sample No.	MVD-T 00-09	MVD-T 00-10	MVD-T 00-11	MVD-T 00-12	MVD-B 00-13	MVD-B 00-14	MVD-B 00-15	MVD-B 01-16
Classification	Basaltic andesite	Basaltic andesite	Andesite	Andesite	Basaltic andesite	Basaltic andesite	Basaltic andesite	Trachyandesite
Rock type	Dike	Dike	Dike	Dike	Dike	Dike	Dike	Dike
Major elements (wt.%)								
SIO ₂	51.92	52.13	61.25	61.35	53.75	54.13	53.34	60.46
	0.888	0.669	1.07	1.07	1.08	1.14	1.08	0.989
	2.68	3 14	13.90	2 24	2 79	2 44	2 75	3 76
FeO	5.36	5.00	5.70	5.06	7.19	7.52	7.30	2.73
MnO	0.150	0.147	0.157	0.152	0.194	0.193	0.194	0.141
MgO	6.08	6.90	1.83	1.82	3.82	3.84	3.83	1.87
CaO	10.10	10.85	5.13	5.16	8.47	8.41	8.34	4.72
Na ₂ O	2.85	2.38	4.27	4.25	3.46	3.57	4.03	4.65
K ₂ O	0.726	0.645	2.30	2.31	0.727	0.706	0.908	2.53
P ₂ O ₅	0.103	0.074	0.288	0.289	0.111	0.116	0.116	0.263
Sum	99.61	99.84	99.81	99.95	99.69	99.66	100.38	99.28
oum	00.01	00.01	00.01	00.00	00.00	00.00	100.00	00.20
Fe ₂ O _{3 corrected}	1.38	1.39	1.24	1.25	1.72	1.72	1.73	1.08
FeO corrected	6.53	6.58	5.86	5.94	8.16	8.17	8.22	5.14
FeO* (FeO _{total})	7.77	7.83	6.98	7.07	9.70	9.72	9.78	6.11
FeO*/MgO	1.28	1.13	3.81	3.88	2.54	2.53	2.55	3.27
Fe ₂ O ₃ /(Fe ₂ O ₃ +FeO)	0.33	0.39	0.20	0.31	0.28	0.24	0.27	0.58
Trace elements by XRF (ppm)								
Nb	4.4	2.4	10.0	10.3	3.7	3.6	3.8	11.8
Zr	88.7	56.5	288.9	292.4	87.6	90.0	87.8	261.1
Sr	246.7	402.3	156.8	159.7	220.6	222.2	227.1	197.1
Rb Zn	19.0	8.0	87.7	88.9	17.6	18.0	17.9	87.7
Zn Ni	71.0	75.0	99.7	92.4	99.2	98.0	105.0	101.2
Cu	54.6	77.6	69.9	63.3	81.3	88.9	93.4	23.8
Pb	4.5	4.1	16.6	13.0	5.8	2.9	6.8	13.7
Ga	16.7	17.4	17.8	17.3	19.5	20.9	19.5	17.9
V	252.8	259.7	84.3	88.0	356.4	352.0	322.7	75.9
Cr	54.8	59.6	8.2	8.0	6.1	6.2	7.4	11.9
Sc	33.7	39.0	23.3	22.3	38.5	36.8	34.8	17.7
Co	31.7	35.6	14.6	14.0	30.8	30.1	27.1	12.1
	159.7	200	347.1	350.9 640	3720	770	149.1 36140	412.4
S	230	90	520	960	710	160	1480	980
-					-			
Trace elements by ICP-MS (ppm))		= = = = = =					
Y	22.31	14.54	52.52		26.43		26.33	38.81
US La	0.56	0.18	2.99		0.57		0.50	1.00
Ce	18.04	11 28	54 62		20.35		19.56	62.08
Pr	2.40	1.58	6.85		2.68		2.59	6.89
Nd	10.61	7.28	28.50		11.87		11.43	27.21
Sm	2.82	2.03	6.98		3.23		3.07	6.05
Eu	0.86	0.74	1.51		1.08		1.09	1.34
Gd	3.22	2.35	7.92		3.71		3.87	6.54
	0.58	0.39	1.37		0.69		0.68	1.06
Ho	0.77	2.43	1.83		4.37		0.93	1.33
Er	2.29	1.51	5.48		2.82		2.77	4.03
Tm	0.34	0.22	0.81		0.41		0.40	0.58
Yb	2.22	1.47	5.32		2.77		2.76	3.84
Lu	0.35	0.22	0.83		0.42		0.40	0.59
Hf -	2.45	1.65	7.77		2.56		2.04	4.35
та ть	0.21	0.09	0.55		0.19		0.25	0.72
in U	3.32	1.22 0.46	16.13 4 74		2.86 0.84		3.11 0.82	11.95 2 94
0	0.57	0.40	4.74		0.04		0.02	2.04
Isotope analyses by TIMS								
⁸⁷ Sr/ ⁸⁶ Sr		0.703656					0.704880	
¹⁴³ Nd/ ¹⁴⁴ Nd		0.512751					0.512740	
²⁰⁶ Pb/ ²⁰⁴ Pb		18 992					18 906	
²⁰⁷ Ph/ ²⁰⁴ Ph		15.002					15.000	
208ph/204ph		10.039					10.071	
		39.048					20.909	

Table E1. Major element, trace element and isotopical analyses of samples from the Megalo Vouno volcano complex.

Sample No.	MVD-B 01-17	MVD-B 01-18	MVD-B 01-19	MVD-B 01-20	MVD-B 01-21	MVD-B 01-22	MVD-B 01-23	MVD-B 01-24
Classification	Trachyandesite	Basaltic andesite	Basaltic andesite	Basaltic andesite	Trachyandesite	Trachyandesite	Andesite	Trachyte
Rock type	Dike	Dike	Dike	Dike	Dike	Dike	Dike	Dike
	Dino	Billo	Dino	2110	Billo	2110	2110	Dillo
Major elements (wt.%)								
SiO ₂	61.61	51.95	52.72	52.83	57.86	58.30	56.20	64.33
TiO ₂	0.989	0.745	0.794	0.892	1.04	1.03	0.890	0.790
Al ₂ O ₃	15.82	18.15	17.63	17.99	15.50	15.48	17.09	15.13
	4.60	2.91	2.85	5.13	2.09	4.17	2.31	2.52
MnO	0.145	0 153	0 147	0.161	0 149	0.158	0.130	0 131
MgO	1.23	5.57	5.03	4.62	2.81	2.35	3.90	1.06
CaO	3.90	10.47	10.02	9.27	6.33	5.30	7.41	3.05
Na ₂ O	5.15	2.80	3.01	3.28	4.15	4.31	3.71	5.03
K₂O	2.39	0.519	0.829	0.735	2.08	2.36	2.05	3.22
P ₂ O ₅	0.304	0.088	0.106	0.114	0.273	0.284	0.171	0.227
LOI	0.81	1.21	1.50	1.55	2.05	2.43	1.53	0.85
Sum	99.76	99.70	99.57	99.79	99.40	99.37	99.53	99.22
Fe ₂ O _{3 corrected}	1.23	1.38	1.33	1.43	1.23	1.23	1.10	0.92
FeO corrected	5.83	6.51	6.30	6.76	5.83	5.85	5.23	4.34
FeO* (FeO _{total})	6.93	7.75	7.50	8.04	6.94	6.96	6.23	5.16
FeO*/MgO	5.63	1.39	1.49	1.74	2.47	2.96	1.60	4.87
Fe ₂ O ₃ /(Fe ₂ O ₃ +FeO)	0.65	0.36	0.37	0.37	0.37	0.57	0.36	0.47
Trace elemente by XRE (nom)								
Nb	11.9	2.2	2.9	2.2	8.7	14.0	8.6	13.8
Zr	294.4	67.9	93.0	79.3	250.1	275.1	183.4	332.8
Sr	173.0	292.6	311.4	308.5	323.2	331.5	233.9	153.0
Rb	69.8	11.9	21.9	17.0	75.7	80.3	69.6	110.8
Zn	113.4	81.5	81.6	88.6	97.9	97.2	75.4	85.3
NI	3.7	31.4	24.9	14.6	11.4	3.3	29.8	3.1
Ph	41.3 21.4	5 4	76.3	65	10.8	40.0	43.2 14 4	20.7
Ga	21.4	18.6	18.8	16.7	18.6	19.7	18.6	16.6
V	31.2	258.4	239.9	265.6	102.9	76.1	156.0	21.1
Cr	5.6	50.8	45.7	11.6	18.6	3.2	78.8	3.8
Sc	19.3	37.9	34.7	33.2	22.4	18.3	21.9	15.5
Со	11.1	32.6	27.9	27.9	16.0	13.4	20.0	7.6
Ba	421.5	116.0	142.0	146.7	310.8	519.6	374.5	538.6
	1290	860	1940	1910	1450	2140	3090	1800
0	300	400	1300	1000	2330	4030	1000	330
Trace elements by ICP-MS (ppm)								
Y		19.39	22.19	23.11	46.85	45.95	28.22	49.09
Cs		0.36	0.69	0.54	2.13	3.94	2.77	3.76
La		6.02	9.00	7.86	22.74	34.78	26.23	36.48
Ce		13.30	19.51	17.67	50.04	73.68	51.52	75.44
FI Nd		8.20	2.30	2.31	25.59 25.50	0.00 33.80	20.74	33 14
Sm		2.35	2.75	2.66	6.16	7.24	4.42	7.19
Eu		0.77	0.82	0.93	1.37	1.54	1.01	1.50
Gd		2.65	3.14	3.27	7.15	7.76	4.81	7.85
Tb		0.49	0.57	0.57	1.20	1.25	0.76	1.30
Dy		3.24	3.65	3.75	7.66	7.79	4.80	8.20
H0 Er		0.69	0.78	0.76	1.61	1.58	0.99	1.70
LI Tm		2.03	2.33	2.34	4.01	4.02	2.93	0.13
Yb		1.99	2 25	2 37	4 81	4 66	2.94	5.12
Lu		0.30	0.35	0.35	0.73	0.72	0.46	0.81
Hf		1.85	2.40	1.93	6.18	6.38	4.31	7.96
Та		0.14	0.21	0.24	0.58	0.75	0.55	0.85
Th		2.36	4.15	3.20	13.99	11.90	12.05	19.97
U		0.73	1.30	0.97	4.48	3.60	3.22	5.60
Isotope analyses by TIMS								
⁸⁷ Sr/ ⁸⁶ Sr		0 70/056		0 7050/6	0 705027	0 707115	0 7060/2	0 70/529
14351-1/14451-1		0.704000		0.703040	0.703037	0.707115	0.700043	0.704038
'Nd/ Nd		0.512833		0.512785	0.512799	0.512558	0.512558	0.512711
²⁰⁰ Pb/ ²⁰⁴ Pb		18.927		18.910	18.876	18.901	18.896	18.895
²⁰⁷ Pb/ ²⁰⁴ Pb		15.660		15.656	15.640	15.673	15.674	15.664
²⁰⁸ Pb/ ²⁰⁴ Pb		39.012		38.971	38.848	38.940	38.940	38.916

 Table E1. Major element, trace element and isotopical analyses of samples from the Megalo Vouno volcano complex.

Sample No.	MVD-B 01-25	MVD-B 01-26	MVD-B 01-27	MVD-B 01-28	MVD-B 01-29	MVD-B 01-30	MVD-B 00-31	MVD-B 00-32
Classification	Basaltic andesite	Basaltic andesite	Basaltic andesite	Trachyandesite	Trachyte	Basaltic andesite	Trachyandesite	Trachyandesite
Rock type	Dike	Dike	Dike	Dike	Dike	Dike	Dike	Benmoreite
rtoon type	Direc	Diric	Direc	Direc	Direc	Diric	Diric	Direc
Major elements (wt.%)								
SiO ₂	55.57	51.29	54.05	56.25	63.92	54.31	58.36	61.35
TiO ₂	0.866	0.958	1.31	1.31	0.807	1.01	0.906	1.02
Al ₂ O ₃	17.11	17.76	15.88	15.78	15.05	16.95	17.03	15.65
Fe ₂ O ₃	2.22	2.75	4.26	3.22	2.70	2.81	2.11	3.47
reO MnO	0.44 0.178	5.10	5.47 0.174	4.40	3.10	5.04 0.151	3.67 0.124	4.17
MaQ	4.41	5.16	3.86	2.91	1.23	3.99	2.08	1.43
CaO	8.35	10.29	7.86	6.99	3.10	8.81	6.08	4.27
Na ₂ O	3.27	3.13	3.70	3.97	4.73	3.52	4.27	5.05
K ₂ O	1.51	0.900	1.22	1.99	3.54	1.35	2.41	2.21
P ₂ O ₅	0.133	0.135	0.188	0.241	0.233	0.166	0.191	0.292
LOI	0.86	2.00	1.42	2.14	0.68	1.55	2.59	0.91
Sum	99.88	99.62	99.40	99.43	99.29	99.67	100.02	99.98
Fe ₂ O ₂ assessed	1.32	1 34	1 65	1 31	0.99	1 34	1 02	1 29
FeO corrected	6.25	6.36	7.82	6.20	4.70	6.36	4.84	6.13
FeO* (FeO _{total})	7.44	7.57	9.30	7.38	5.59	7.57	5.76	7.29
FeO*/MgO	1.69	1.47	2.41	2.54	4.54	1.90	2.77	5.10
Fe ₂ O ₃ /(Fe ₂ O ₃ +FeO)	0.29	0.35	0.44	0.42	0.46	0.36	0.35	0.45
Irace elements by XRF (ppm)	59	4.5	5.5	9.9	14 9	5.5	11 1	11 3
Zr	135.1	100.5	152.3	223.7	383.3	154.2	227.9	284.6
Sr	196.8	317.2	203.4	225.6	161.6	225.5	283.9	179.6
Rb	56.9	24.8	36.1	65.9	133.3	46.9	76.2	55.5
Zn	82.4	73.4	114.3	97.0	84.0	82.3	73.2	106.7
Ni	17.1	36.6	16.4	11.1	3.5	20.0	3.7	2.8
Cu	10.2	/8./	117.1	83.3	25.9	81.3	44.9	60.5
PD	10.2	4.0	5.8 20.6	10.2	10.4	11.1	16.0	12.0
V	216.5	252.1	346.4	234.3	20.3	242.9	124 7	41.8
Cr	10.0	43.6	15.3	19.9	3.9	51.2	4.2	3.2
Sc	27.2	31.1	39.6	28.2	15.3	32.7	15.7	19.2
Co	25.3	28.1	28.6	19.5	6.9	25.5	10.4	10.5
Ba	218.1	162.0	185.8	277.2	537.0	210.1	461.7	383.6
CI	1600	1890	6760	2820	1120	2800	20910	8720
5	1340	3170	1820	3630	200	950	5200	1960
Trace elements by ICP-MS (ppm	1)							
Y	27.28	24.78	35.32	41.52	51.96	30.64	33.14	48.07
Cs	2.07	0.87	1.37	2.30	2.82	1.61	2.81	2.41
La	14.76	10.53	13.98	20.58	39.46	14.36	27.53	28.03
Ce	31.20	23.16	31.15	45.04	80.53	31.26	56.20	57.84
Pr	3.62	2.78	3.86	5.43	9.04	3.74	6.53	7.12
Sm	3 70	3.06	4 56	5 71	7 79	4 00	23.04 5.27	6 76
Eu	0.93	0.90	1.23	1.35	1.43	1.00	1.19	1.58
Gd	4.25	3.59	5.25	6.39	8.60	4.62	5.73	7.58
Tb	0.71	0.64	0.94	1.08	1.40	0.80	0.90	1.30
Dy	4.55	4.06	6.01	6.96	8.83	5.10	5.47	7.89
Ho	0.94	0.87	1.26	1.47	1.82	1.08	1.13	1.70
Er Tm	2.88	2.60	3.81	4.49	5.55	3.22	3.45	5.07
Thi Vh	2.84	0.38	0.55	0.05	0.82 5.49	0.48	0.52	0.76
lu	0.44	0.39	0.57	0.68	0.85	0.51	0.53	0.77
Hf	3.56	2.61	3.85	5.56	9.16	3.94	6.04	7.32
Та	0.42	0.29	0.35	0.61	0.92	0.39	0.53	0.54
Th	9.40	4.62	6.80	12.12	23.87	8.67	13.73	12.11
U	3.07	1.53	2.07	3.86	6.89	2.64	3.74	3.18
Isotope analyses by TIMS								
^ĕ ′Sr/ ^{ĕ6} Sr	0.705004							0.704912
¹⁴³ Nd/ ¹⁴⁴ Nd	0.512700							0.512711
²⁰⁶ Pb/ ²⁰⁴ Pb	18,859							18.892
²⁰⁷ Ph/ ²⁰⁴ Ph	15 672							15 667
208 ph /204 ph	10.073							10.007
PD/ PD	38.940							38.910

Table E1. Major element, trace element and isotopical analyses of samples from the Megalo Vouno volcano complex.

Sample No.	MVD-B 00-33	MVD-B 00-34	MVD-B 00-35	MVD-B 00-36	MV-T 01-37	MV-B 01-38
Classification	Trachyandesite	Trachyte	Trachyte	Trachyandesite	Basaltic andesite	Trachyandesite
Subdivision	Benmoreite			Benmoreite		Benmoreite
Rock type	Dike	Dike	Dike	Dike	Scoria	Lava flow
SiO	61 79	64.06	61 44	60.00	55 77	56 92
TiO	1 02	0.870	0.827	0.991	0.882	0 747
Al ₂ O ₃	15.73	15.60	16.81	15.21	17.00	19.88
Fe ₂ O ₃	4.27	2.67	3.78	2.73	7.17	4.38
FeO	3.50	3.40	1.91	4.54	0.840	1.69
MnO	0.185	0.142	0.132	0.173	0.146	0.132
MgO	1.38	1.24	1.29	1.73	4.09	1.68
CaO	4.19	3.64	4.31	4.79	7.97	6.97
Na ₂ O	4.87	4.96	4.75	4.78	3.38	4.56
K₂O	2.28	2.44	3.37	2.30	1.51	2.06
P ₂ O ₅	0.289	0.242	0.234	0.284	0.138	0.223
LOI	0.59	0.64	1.04	2.21	0.77	0.61
Sum	100.09	99.88	99.89	99.74	99.67	99.85
Fe ₂ O _{3 corrected}	1.30	1.03	0.94	1.24	1.29	1.00
FeO corrected	6.17	4.87	4.47	5.88	6.13	4.74
FeO* (FeO _{total})	7.34	5.80	5.31	7.00	7.29	5.63
FeO*/MgO	5.32	4.68	4.12	4.05	1.78	3.35
Fe ₂ O ₃ /(Fe ₂ O ₃ +FeO)	0.55	0.44	0.66	0.38	0.90	0.72
Trace elements by XRF (ppm)	10.8	11 3	15.0	11.4	57	10.1
Zr	277 6	260.8	293.8	277 7	138 2	184.6
 Sr	172.6	166.4	200.2	257.5	188.9	376.0
Rb	72.4	74.0	108.2	72.1	57.5	58.0
Zn	101.5	85.4	77.6	102.4	85.4	77.7
Ni	2.9	1.8	3.3	2.3	17.7	6.3
Cu	61.0	25.9	21.7	49.2	64.9	36.8
Pb	12.2	13.2	21.9	13.8	14.0	19.1
Ga	19.6	16.2	17.5	18.8	17.8	20.0
V	47.1	32.5	63.3	38.2	226.8	111.7
Cr	3.2	3.1	4.0	4.1	12.5	5.8
Sc	18.8	17.2	11.6	16.3	29.9	11.3
	12.0	8.8	10.1	10.2	26.6	13.8
Ва	380.9	430.6	604.5	371.4	230.0	429.8
S S	780	290	940 2790	6350 4140	220	1210
5	700	230	2130	4140	100	1000
Trace elements by ICP-MS (ppm)						
Y		45.44				27.86
Cs		1.94				1.05
La		28.30				29.70
Je		57.26				60.10
-i Vid		0.00				24.69
Sm		6.28				24.00 4 71
		1 46				1 22
 Gd		7.05				5.31
ГЬ		1.21				0.75
Эy		7.32				4.66
, Ho		1.56				0.93
Ξr		4.74				2.85
Гm		0.71				0.42
ŕb		4.71				2.90
_u		0.72				0.42
Hf		6.94				3.67
Ta		0.59				0.66
l h		14.85				11.03
U		3.83				2.86
sotope analyses by TIMS						
¹⁷ Sr/ ⁸⁶ Sr						0 705029
43NId/144NId						0.7.00020
INU/ INU 206-: 204-:						0.512645
Pb/ ²⁰⁴ Pb						18.907

Table E1. Major element, trace element and isotopical analyses of samples from the Megalo Vouno volcano complex.

⁸⁷ Sr/ ⁸⁶ Sr	0.70502
¹⁴³ Nd/ ¹⁴⁴ Nd	0.51264
²⁰⁶ Pb/ ²⁰⁴ Pb	18.907
²⁰⁷ Pb/ ²⁰⁴ Pb	15.674
²⁰⁸ Pb/ ²⁰⁴ Pb	38.957

Table E2. Major element, trace element and isotopic analyses of five lava flows from the Megalo Vouno volcano complex sampled by Hansen (1997). Isotope data and ICP-MS data were obtained for this study, the remaining data plus classification are by Hansen (1997).

Sample No. Classification Subdivision	MV104 Trachyandesite Benmoreite	MV108 Andesite	MV109 Basaltic andesite	MV110 Basaltic andesite	MV115 Basaltic andesite
Rock type	Lava flow	Lava flow	Lava flow	Lava flow	Lava flow
Major elements (wt.%)					
SiO ₂	59.87	57.00	53.27	54.28	52.59
TiO ₂	0.990	0.794	0.891	0.838	0.833
Al ₂ O ₃	17.15	17.07	17.36	16.97	16.97
Fe ₂ O ₃	2.22	2.06	3.13	2.57	2.34
FeO	4.43	4.56	4.78	4.99	5.47
MaO	0.150	0.136	0.157	0.147	0.153
NigO CaO	2.10	3.03	2.01	0.00 9.52	0.72
Na O	5.50	2.11	0.93	0.02	9.37
K ₂ O	2 11	2 22	1 28	1 57	1 19
P ₂ O _F	0.204	0 140	0 121	0.120	0 109
LOI	0.36	1.16	0.83	1.00	0.90
Sum	99.59	99.52	99.55	99.635	99.44
FeO* (FeO _{total})	6.43	6.41	7.60	7.30	7.58
FeO*/MgO	3.06	1.77	1.31	1.31	1.13
Trace elements by XRF (p	pm)				
Nb	11.1	11.1	8.1	8.2	7.2
Zr	208	201	138	161	136
Sr	229	267	288	221	209
Rb	69	78	39	55	41
Zn	80	70	84	79	74
NI	6	21	54	60	89
	34	29	45	50	46
FD	18	13	10	12	10
V	135	155	211	214	222
Cr	7	44	136	157	269
Sc	18	19	26	30	31
Co	74	102	92	78	88
Ва	408	449	312	313	228
Trace elements by ICP-MS	(ppm)				
Y	37.21	29.71	25.90	27.34	26.44
Cs	1.53	2.73	1.20	1.97	1.49
La	26.90	28.16	18.68	21.24	16.82
Ce	52.46	55.24	38.25	41.45	32.65
Pr	6.50	6.31	4.58	4.84	3.88
Nd	25.28	22.99	17.75	18.27	15.46
Sm	5.61	4.64	3.95	3.92	3.56
Eu	1.36	1.07	1.04	0.99	0.93
Gd	6.36	5.36	4.48	4.74	4.12
	1.01	0.80	0.69	0.73	0.68
Ho	0.29	4.07	4.32	4.45	4.22
Fr	3.88	3.01	2.59	2 77	2 65
Tm	0.56	0.43	0.37	0.41	0.38
Yb	3.82	2.96	2.51	2.75	2.55
Lu	0.56	0.43	0.36	0.40	0.37
Hf	4.59	4.18	2.95	3.42	2.76
Та	0.92	1.07	0.74	0.78	0.59
Th	13.71	14.09	6.51	10.35	7.74
U	3.57	3.51	1.53	2.47	1.81
Isotope analyses by TIMS					
°′Sr/ ⁸⁶ Sr	0.705625	0.706172	0.706376	0.705658	0.704693
¹⁴³ Nd/ ¹⁴⁴ Nd	0.512613	0.512523	0.512531	0.512566	0.512636
²⁰⁶ Pb/ ²⁰⁴ Pb	18.921	18.903	18.799	18.886	18.873
²⁰⁷ Pb/ ²⁰⁴ Pb	15.673	15.688	15.640	15.683	15.668
²⁰⁸ Pb/ ²⁰⁴ Pb	38.958	39.009	38.824	39.004	38.932

 Table E3. Investigation methods.

Sample no.	Thin section	Swing mill (agate)	XRF Majors	XRF Traces	ICP-MS	Sr, Nd, Pb isotopes
MVD-T 00-01	1	1	1	1	1	1
MVD-T 01-02	2	2	2	2	2	
MVD-T 00-03	3	3	3	3	3	
MVD-T 00-04	4	4	4	4	4	
MVD-T 01-05	5	5	5	5		
MVD-T 01-06	6	6	6	6	6	6
MVD-T 00-07	7	7	7	7	7	7
MVD-T 01-08	8	8	8	8	8	8
MVD-T 00-09	9	9	9	9	9	
MVD-T 00-10	0	0	0	0	0	0
MVD-T 00-11	1	1	1	1	1	
MVD-T 00-12	2	2	2	2		
MVD-B 00-13	3	3	3	3	3	
MVD-B 00-14	4	4	4	4		
MVD-B 00-15	5	5	5	5	5	5
MVD-B 01-16	6	6	6	6	6	
MVD-B 01-17	7	7	7	7		
MVD-B 01-18	8	8	8	8	8	8
MVD-B 01-19	9	9	9	9	9	
MVD-B 01-20	0	0	0	0	0	0
MVD-B 01-21	1	1	1	1	1	1
MVD-B 01-22	2	2	2	2	2	2
MVD-B 01-23	3	3	3	3	3	3
MVD-B 01-24	4	4	4	4	4	4
MVD-B 01-25	5	5	5	5	5	5
MVD-B 01-26	6	6	6	6	6	
MVD-B 01-27	7	7	7	7	7	
MVD-B 01-28	8	8	8	8	8	
MVD-B 01-29	9	9	9	9	9	
MVD-B 01-30	0	0	0	0	0	
MVD-B 00-31	1	1	1	1	1	
MVD-B 00-32	2	2	2	2	2	2
MVD-B 00-33	3	3	3	3		
MVD-B 00-34	4	4	4	4	4	
MVD-B 00-35	5	5	5	5		
MVD-B 00-36	6	6	6	6		
MV-T 01-37	Ô	7	7	7		\sim
MV-B 01-38	8	8	8	8	8	8

Table E4. CIPW norm results in wt% norm. The left hand row for each sample has been calculated using 0.19 in the Fe correction (following the recommendations by Holm (1997) whereas the right hand row gives the results when correcting using 0.3 as suggested by Gill (1981) (see text for discussion).

							ĺ																		
MVD-T 00-01 MVD-T	1-GVM 10-	T-OW	F	02 N	TVD-T 00-03	MVD-T 0	10-04	MVD-T 0	5	INVD-T 01	8	MVD-T 00-07	INN	D-T 01-08	MVD-T (60-00	INVD-T 0(단	MVD-T 00-11		T 00-12	MVD-B 0(끔	MVD-B 00-	14
1.6 2.3 1.4	2.3 1.4	14		2.1	1.6 2.	2 6.1	6.8	0.7	1.4	0.0	0.0	11.6 12	2.2 L	1.6 1.6	6.0	1.6	2.0	2.7	12.4 1	3.0 12.4	4 13.0	4.5	5.3	4.5	5.4
3.8 3.8 3.8	3.8 3.8	3.8		3.8	3.6 3.1	5 8.9	8.9	4.7	4.7	2.8	2.8	12.5 12	2.5	2.9 2.9	4.3	4.3	3.9	3.9	13.7 1	3.7 13.7	7 13.7	4.4	44	42	4.2
22.3 22.3 22.2	22.3 22.2	22.2		22.2	23.0 23.4	0 27.7	27.7	29.1	25.1	22.1	21.9	34.4 34	1.4 24	1.5 24.4	24.3	24.3	20.3	20.3	36.3 3	6.3 36.0	0 36.0	29.6	29.6	30.4	30.4
34.5 34.5 34.	34.5 34.	ਲੋ	4	34.4	34.7 34.	7 28.5	28.5	З6.1 2	35.1	37.0	36.7	20.0	7.0 3.7	7.5 37.5	35.0	35.0	34.8	34.8	17.5 1	7.5 17.6	8 17.8	29.7	29.7	28.8	28.8
15.2 15.1 15.2	15.1 15.2	15.	~	15.1	15.2 15.	1 10.2	10.1	11.3	11.3	13.4	13.4	5.8 5	5.8 10	0.3 10.2	12.2	12.1	15.5	15.4	53	5.2 5.0	0 5.0	10.1	10.1	10.4	10.3
18.9 17.4 19.	17.4 19.	19.	с С	17.8	18.0 16.1	5 14.9	13.5	19.1	17.6	16.3	17.8	11.1 9	1.8 2L	0.0 18.5	19.2	17.7	20.1	18.6	10.3	8.9 10.4	4 9.1	16.9	15.0	16.6	14.8
0.0 0.0	0.0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	4.7	2.8	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.0 2.9 2	2.9	2		3.0	2.0 2.4	9 1.9	2.7	2.1	3.0	2.1	2.9	1.8 2	2.6	2.1 3.0	2.0	2.9	2.0	2.9	1.8	2.6 1.6	8 2.6	2.5	3.6	2.5	3.6
1.5 1.5 1	1.5 1.5	Ē	5	1.5	1.6 7.1	6 1.6	1.6	1.7	1.7	1.5	1.5	2.1 2	2.1	1.7 1.7	1.7	1.7	1.3	1.3	2.0	2.0 2.0	0 2:0	2.1	2.1	2.2	2.2
0.2 0.2 0	0.2 0	٩	2	0.2	0.2 0.	2 0.3	0.3	0.3	0.3	0.2	0.2	0.6 6).6 (0.3 0.3	0.2	0.2	2.0	0.2	0.7	0.7 0.7	7 0.7	0.3	0.3	0.3	0.3
MVD-B 00-15 M	-15 M	٤	0-8-01-	16 N	ND B 01 17	MVD-B G	M-18	MVD-B 0	1-19	MVD-B 01	1-20	MVD-B 01-21	INN	D-B 01-22	MD-B(01-23	MVD-B 0	24	WVD-B 01-25		B 01-26	MVD-B 01	-27	MVD-B 01.	82
0.9 1.8	1.8		9.6	10.1	10.6 11	2 2.2	2.9	2.8	3.5	2.8	3.6	8 67	3.5 6	3.5 9.2	4.8	5.4	13.8	14.2	5.4	6.0 0.1	1 0.7	4.0	4.8	6.3	6.9
5.4 5.4	5.4		15.2	15.2	14.4 14.	3 3.1	3.1	5.0	5.0	4.4	4.4	12.7 12	2.6 14	1.5 14.5	12.4	12.4	19.4	19.4	9.1	9.1 5.5	5.5	7.4	7.4	12.1	12.1
34.5 34.5	34.5		39.9	39.9	41 44	1 24.0	24.0	26.0	25.9	28.2	28.2	36.0 36	3.0 3.1	7.7 37.6	32.0	32.0	43.3	43.2	27.9 2	7.9 27.1	1 27.1	32.0	32.0	34.5	34.5
25.7 25.7	25.7		17.1	17.1	13.1 13.	1 36.0	35.9	32.8	32.7	32.8	32.7	18.0 75	3.0 1£	5.4 16.4	24.4	24.4	9.3	9.3	27.8 2	7.8 32.5	5 32.5	23.6	23.6	19.9	19.9
12.9 12.8	12.8		4.1	4.1	3.8 3.	8 13.3	13.3	14.2	14.1	11.0	11.0	10.4 10	7.3	14 7.4	6.6	9.8	3.9	3.9	10.9 1	0.8 15.5	5 15.4	12.5	12.4	11.8	11.7
15.7 13.8	13.8		10.0	8.8	9.6 8.	2 17.7	16.2	15.5	14.1	16.6	15.1	10.5 9	0.2 1C	9.6	12.7	11.6	7.0	6.0	15.1 1	3.7 15.2	2 13.7	15.0	13.3	10.3	8.9
0.0 0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0). D	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0
2.5 3.7	3.7		1.6	2.3	1.8 2.1	5 2.0	2.9	2.0	2.8	2.1	3.0	1.8 2	2.6	1.8 2.7	1.6	2.4	1.3	1.9	1.9	2.8 2.0	0 2.9	2.4	3.5	2.0	2.8
2.1 2.1	2.1		1.9	1.9	1.9 7.	9 1.4	1.4	1.5	1.5	1.7	1.7	2.0 2	20	2.0 2.0	1.7	1.7	1.5	1.5	1.7	1.7 1.5	9 1.9	2.5	2.5	2.6	2.6
0.3 0.3	0.3		0.6	0.6	0.7 0.	7 0.2	0.2	0.3	0.3	0.3	0.3	0.7 0	J.7 L	0.7 0.7	0.4	0.4	0.5	0.5	0.3	0.3 0.3	3 0.3	0.5	0.5	0.6	0.6
MVD-B 01-29	-29	_	WD-B 01	30 V	TVD-B 00-31	MVD-B C	30-32	MVD-B 0	0-33	MVD-B 00	34	MVD-B 00-35	INN	0-B 00-36	0 T-VM	1-37	MV-B 01	89. 199							
13.2 13.7	13.7		3.7	4.4	7.8 8.	3 10.5	11.2	11.6	12.3	14.7	15.2	8.9	3 6.	9.7 10.3	6.1	6.8	3.8	4.3							
21.3 21.3	21.3		8.2	8.2	14.7 14.	7 13.2	13.2	13.6	13.6	14.6	14.6	20.3 20	7.2 14	1.0 14.0	9.1	9.1	12.4	12.3							
40.6 40.6	40.6		30.3	30.3	37.1 37.4	0 43.2	43.1	41.5	41.4	42.3	42.3	40.7 40	1.7 41	1.5 41.4	29.0	29.0	38.9	38.9							
9.5 9.5	9.5		27.0	26.9	20.7 20.	7 13.6	13.6	14.4	14.4	13.2	13.2	14.8 74	1.7 13	3.6 13.6	27.2	27.1	27.9	27.9							
3.9 3.9	3.9		13.7	13.6	7.5 7.	5.0	5.0	4.0	4.0	2.9	2.9	4.6 4	1.5	7.5 7.5	10.0	9.9	4.7	4.6							
7.9 6.8	6.8		12.8	11.4	8.5 7.	4 9.9	8.5	10.4	9.0	8.6	7.5	7.3 6	3.3 5.3	9.3 7.9	14.6	13.2	8.8	7.8							
0.0 0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0). C	0.0 0.0	0.0	0.0	0.0	0.0							
1.5 2.1	2.1		2.0	2.9	1.5 2.	2 1.9	2.7	1.9	2.7	1.5	2.2	1.4 2	1 0.5	1.8 2.7	1.9	2.7	1.5	2.1							
1.6 1.6	1.6		2.0	2.0	1.8 1.4	8 1.9	1.9	2.0	2.0	1.7	1.7	1.6 7	1.6	1.9 1.9	1.7	1.7	14	1.4							
0.6 0.6	0.6		0.4	0.4	0.5 0.	5 0.7	0.7	0.7	0.7	0.6	0.6	0.6 0).6 L	0.7 0.7	0.3	0.3	0.5	0.5							

Fe₂O₃/FeO: 0.15

Thus new Sigma FeO: 0.793*Fe₂O₃+0.881*FeO

Wt.%	Sample			Calculations					Result
	MVD-T 00-01		Calculation 1	Calculation 2	Calculation 3				
SiO ₂	52.28	SiO ₂	52.280	0.870	0.491	or	0.028	ol	0.351
TiO ₂	0.779	TiO ₂	0.779	0.010	0.217	sp	0.020	qtz	0.222
AI_2O_3	17.61	Al ₂ O ₃	17.610	0.345	0.424			срх	0.427
Fe ₂ O ₃	1.92	Sigma FeO	6.941	0.097	0.172				
FeO	6.15	MgO	6.450	0.160	0.139			ol	0.152
MgO	6.45	CaO	10.760	0.192	0.978			qtz	0.096
CaO	10.76	Na ₂ O	2.630	0.085	2.257			plg	0.752
Na ₂ O	2.63	K₂O	0.641	0.014					
K ₂ O	0.641	Cr_2O_3	0.012	0.000					
Cr_2O_3	0.012								
			Colculation 1	Coloulation 2	Coloulation 2				Booult
SiO	52.06	SiO	52 060	0.866	0.490	or	0.028	ol	0 357
	0.785		0 785	0.000	0.430	50	0.020	atz	0.007
	17 51		17 510	0.010	0.423	зþ	0.020	qız cny	0.426
	2.70	$A_{12}O_3$	6.097	0.343	0.423			срх	0.420
	2.79	Sigma FeO	6.987	0.097	0.175			ol	0 155
MaO	6.55	CaO	10.720	0.102	0.984			atz	0.095
CaO	10.72	Na ₂ O	2.610	0.084	2.257			=pla	0.750
Na ₂ O	2.61	K₂Ō	0.639	0.014				15	
K₂Q	0.639		0.012	0.000					
CroOo	0.012	2-3	0.0.12	0.000					
0.203	0.012								
	MVD-T 00-03		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	52.21	SiO ₂	52.210	0.869	0.486	or	0.026	ol	0.341
TiO ₂	0.843	TiO ₂	0.843	0.011	0.212	sp	0.022	qtz	0.220
AI_2O_3	17.79	Al ₂ O ₃	17.790	0.349	0.436			срх	0.439
Fe ₂ O ₃	1.55	Sigma FeO	6.903	0.096	0.164				
FeO	6.44	MgO	6.170	0.153	0.141			ol	0.144
MgO	6.17	CaO	10.810	0.193	0.962			qtz	0.093
CaO	10.81	Na ₂ O	2.710	0.087	2.282			plg	0.763
Na ₂ O	2.71	K₂O	0.603	0.013					
K ₂ O	0.603	Cr_2O_3	0.014	0.000					
Cr_2O_3	0.014								
			Coloulation 1	Coloulation 2	Coloulation 2				Booult
SiO.	100-04 56 12	SiO.	56 120			or	0.061	ol	
	0.856		0.856	0.004	0.322	50	0.001	atz	0.237
AL-O-	17 30		17 300	0.011	0.397	SP	0.021	quz cnx	0.326
	1 75	Ai2O3	6 454	0.041	0.037			Срх	0.520
	5.75	MaO	0.434 4 270	0.090	0.122			ol	0 1 1 4
MaO	4.27	CaO	8.350	0.100	0.823			atz	0.145
CaO	8.35	Na ₂ O	3.260	0.105	2.143			plq	0.741
Na ₂ O	3.26	K₂O	1.490	0.032				10	
K₂Ō	1.49	Cr ₂ O ₃	0.001	0.000					
Cr ₂ O ₃	0.001	- 2 - 5							
2 0									
	MVD-T 01-05		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	52.00	SiO ₂	52.000	0.865	0.475	or	0.035	ol	0.402
TiO ₂	0.89	TiO ₂	0.890	0.011	0.192	sp	0.024	qtz	0.220
AI_2O_3	18.50	AI_2O_3	18.500	0.363	0.464			срх	0.378
Fe_2O_3	2.30	Sigma FeO	6.995	0.097	0.175				
FeO	5.87	MgO	5.800	0.144	0.110			ol	0.146
MgO	5.80	CaO	9.970	0.178	0.872			qtz	0.080
	9.97		2.950	0.095	2.400			pig	0.774
INA ₂ O	2.95	K ₂ U	0.780	0.017					
K ₂ U	0.780	Cr_2O_3	0.008	0.000					
Cr_2O_3	0.008								

Wt.%	Sample			Calculations					Result
	MVD-T 01-06		Calculation 1	Calculation 2	Calculation 3				
SiO ₂	50.33	SiO ₂	50.330	0.838	0.467	or	0.021	ol	0.447
TiO ₂	0.784	TiO ₂	0.784	0.010	0.149	sp	0.021	qtz	0.153
AI_2O_3	18.27	AI_2O_3	18.270	0.358	0.463			срх	0.400
Fe_2O_3	1.82	Sigma FeO	7.011	0.098	0.217				
FeO	6.32	MgO	7.460	0.185	0.129			ol	0.178
MgO	7.46	CaO	10.800	0.193	0.970			qtz	0.061
CaO	10.80	Na ₂ O	2.600	0.084	2.433			plg	0.761
Na ₂ O	2.60	K ₂ O	0.471	0.010					
K ₂ O	0.471	Cr_2O_3	0.012	0.000					
Cr_2O_3	0.012								
	MVD-T 00-07		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	59.62	SiO ₂	59.620	0.992	0.558	or	0.079	ol	0.206
TiO ₂	1.10	TiO ₂	1.100	0.014	0.409	sp	0.025	qtz	0.567
AI_2O_3	16.05	Al ₂ O ₃	16.050	0.315	0.358			срх	0.227
Fe ₂ O ₃	1.55	Sigma FeO	6.092	0.085	0.074				
FeO	5.52	MgO	2.260	0.056	0.055			ol	0.075
MgO	2.26	CaO	5.680	0.101	0.722			qtz	0.206
CaO	5.68	Na ₂ O	4.000	0.129	1.990			plg	0.720
Na ₂ O	4.00	K ₂ O	2.080	0.044					
K ₂ O	2.08	Cr_2O_3	0.002	0.000					
Cr_2O_3	0.002								
	MVD-T 01-08		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	51.33	SiO ₂	51.330	0.854	0.480	or	0.021	ol	0.421
TiO ₂	0.897	TiO	0.897	0.011	0 207	sp	0.023	atz	0 240
Al ₂ O ₂	18 82	Al ₂ O ₂	18 820	0.369	0.470	99	0.020	cox	0.339
Fe ₂ O ₂	4 04	Sigma FeO	7 001	0.097	0 182			opri	0.000
FeO	4.31	MaO	5.900	0.146	0.097			ol	0.148
MgO	5.90	CaO	10.100	0.180	0.862			qtz	0.084
CaO	10.10	Na ₂ O	2.860	0.092	2.448			plg	0.767
Na ₂ O	2.86	K ₂ O	0.482	0.010					
K ₂ O	0.482	Cr ₂ O ₃	0.009	0.000					
Cr_2O_3	0.009								
			Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	51.92	SiO2	51.920	0.864	0.480	or	0.032	ol	0.391
TiO ₂	0.888	TiO2	0.888	0.011	0.203	SD	0.023	atz	0.226
AlaOa	18 21	AlaQa	18 210	0.357	0.451			CDX	0.384
Fe ₂ O ₂	2.68	Sigma FeO	6 847	0.095	0.176			opx	0.001
FeO	5.36	MaQ	6.080	0.151	0.115			ol	0.149
MgO	6.08	CaO	10.100	0.180	0.899			qtz	0.086
CaO	10.10	Na ₂ O	2.850	0.092	2.360			plg	0.765
Na ₂ O	2.85	K ₂ O	0.726	0.015					
K₂O	0.726	Cr ₂ O ₃	0.008	0.000					
Cr_2O_3	0.008								
			Calculation 1	Calculation ?	Calculation 3				Recult
SiO ₂	52 13	SiO	52 130	0 868	0 502	or	0 027	ol	0.357
TiO	0 660	TiO	0.660	0.000	0.002	en	0.027	rto T	0.007
	17 20	AL ₂	17 200	U 23U	0.230	зh	0.017	412 CDV	0.204
Fe ₂ O ₃	2 1/	Sigma EcO	6 805	0.008	0.401			opx	0.409
FeO	5.00	Man	6 000 0.090	0.090 0 171	0.101			ol	0 164
MgO	6.90	CaO	10.850	0.193	1.011			qtz	0.107
CaO	10.85	Na ₂ O	2.380	0.077	2.202			plq	0.729
Na₂O	2.38	K ₂ O	0.645	0.014					
K ₂ O	0.645	Cr_2O_3	0.009	0.000					
Cr_2O_3	0.009	-							

Wt.%	Sample			Calculations					Result
	MVD-T 00-11		Calculation 1	Calculation 2	Calculation 3				
SiO ₂	61.25	SiO ₂	61.250	1.019	0.568	or	0.086	ol	0.188
TiO ₂	1.07	TiO ₂	1.070	0.013	0.421	sp	0.024	qtz	0.596
AI_2O_3	15.9	Al ₂ O ₃	15.900	0.312	0.353			срх	0.216
Fe ₂ O ₃	1.42	Sigma FeO	6.148	0.086	0.066				
FeO	5.70	MgO	1.830	0.045	0.051			ol	0.068
MgO	1.83	CaO	5.130	0.091	0.705			qtz	0.214
CaO	5.13	Na₂O	4.270	0.138	1.964			plg	0.718
Na ₂ O	4.27	K ₂ O	2.300	0.049					
K ₂ O	2.30	Cr ₂ O ₃	0.001	0.000					
Cr_2O_3	0.001								
			Coloulation 1	Coloulation 2	Coloulation 2				Popult
SiO.	61 35	SiO	61 350	1 021	0 570	or	0.086	ol	0 102
510 ₂	1.07		1 070	0.012	0.370	01	0.000	UI ata	0.192
	1.07		1.070	0.013	0.421	sp	0.024	qız	0.598
	16.02		16.020	0.314	0.353			срх	0.209
Fe ₂ O ₃	2.24	Sigma FeO	6.234	0.087	0.068				0.000
FeO MaO	5.06	MgO	1.820	0.045	0.049			0I ctz	0.069
MgO CaO	5.16	Na.O	3.160	0.092	1.069			yız pla	0.214
	4.05	K O	4.230	0.137	1.900			pig	0.717
	4.20		2.310	0.049					
R ₂ U	2.31		0.001	0.000					
Cr_2O_3	0.001								
	MVD-B 00-13		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	53.75	SiO ₂	53.750	0.895	0.503	or	0.031	ol	0.338
TiO ₂	1.08	TiO ₂	1.080	0.014	0.280	sp	0.027	qtz	0.336
Al ₂ O ₂	17.24	Al ₂ O ₂	17.240	0.338	0.432	-1		срх	0.326
FeaOa	2 79	Sigma FeO	8 547	0 119	0 140			•	
FeO	7 19	MaQ	3 820	0.095	0.090			ol	0 123
MqO	3.82	CaO	8.470	0.151	0.832			qtz	0.120
CaO	8.47	Na ₂ O	3.460	0.112	2.288			plg	0.755
Na ₂ O	3.46	K ₂ O	0.727	0.015					
K₂O	0.727	Cr ₂ O ₃	0.001	0.000					
Cr_2O_3	0.001	2 0							
	MVD-B 00-14		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	54.13	SiO ₂	54.130	0.901	0.505	or	0.030	ol	0.330
TiO ₂	1.14	TiO ₂	1.140	0.014	0.279	sp	0.028	qtz	0.335
AI_2O_3	17.14	Al ₂ O ₃	17.140	0.336	0.432			срх	0.335
Fe_2O_3	2.44	Sigma FeO	8.560	0.119	0.138				
FeO	7.52	MgO	3.840	0.095	0.093			ol	0.121
MgO	3.84	CaO	8.410	0.150	0.833			qtz	0.122
CaO	8.41	Na ₂ O	3.570	0.115	2.283			plg	0.757
Na ₂ O	3.57	K ₂ O	0.706	0.015					
K₂O	0.706	Cr ₂ O ₃	0.001	0.000					
Cr_2O_3	0.001								
SiO	MVD-B 00-15	SiO	Calculation 1	Calculation 2	Calculation 3		0.042	a !	Result
510 ₂	53.34	510 ₂	53.340	0.088	0.454	or	0.042		0.344
	1.08		1.080	0.014	0.170	sp	0.030	qtz	0.203
AI ₂ O ₃	16.94	Al ₂ O ₃	16.940	0.332	0.488			срх	0.453
Fe ₂ O ₃	2.75	Sigma FeO	8.612	0.120	0.144				
FeO	7.30	MgO	3.830	0.095	0.126			ol	0.119
NIGO	3.83		8.340	0.149	0.836			qtz	0.070
	8.34		4.030	0.130	2.410			pig	0.810
INA ₂ O	4.03	κ ₂ Ο	0.908	0.019					
K ₂ U	0.908	Cr_2O_3	0.001	0.000					
Cr ₂ O ₃	0.001								

Table E5a. Data used in pseudo-ternary plots of Grove & Baker (1984)

Wt.%	Sample			Calculations					Result
	MVD-B 01-16		Calculation 1	Calculation 2	Calculation 3				
SiO ₂	60.46	SiO ₂	60.460	1.006	0.527	or	0.102	ol	0.219
TiO ₂	0.989	TiO ₂	0.989	0.012	0.361	sp	0.024	qtz	0.570
AI_2O_3	16.57	AI_2O_3	16.570	0.325	0.400			срх	0.212
Fe ₂ O ₃	3.76	Sigma FeO	5.387	0.075	0.069				
FeO	2.73	MgO	1.870	0.046	0.045			ol	0.066
MgO	1.87	CaO	4.720	0.084	0.633			qtz	0.172
CaO	4.72	Na ₂ O	4.650	0.150	2.099			plg	0.762
Na ₂ O	4.65	K ₂ O	2.530	0.054					
K ₂ O	2.53	Cr_2O_3	0.002	0.000					
Cr ₂ O ₃	0.002								
	MVD-B 01-17		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	61.61	SiO ₂	61.610	1.025	0.534	or	0.095	ol	0.201
TiO ₂	0.989	TiO ₂	0.989	0.012	0.377	sp	0.023	qtz	0.596
AI_2O_3	15.82	Al ₂ O ₃	15.820	0.310	0.398			срх	0.203
Fe ₂ O ₃	4.86	Sigma FeO	6.109	0.085	0.064				
FeO	2.56	MgO	1.230	0.031	0.043			ol	0.061
MgO	1.23	CaO	3.900	0.070	0.633			qtz	0.180
CaO	3.90	Na ₂ O	5.150	0.166	2.098			plg	0.760
Na ₂ O	5.15	K ₂ O	2.390	0.051					
K ₂ O	2.39	Cr ₂ O ₃	0.001	0.000					
Cr_2O_3	0.001								
	MVD-B 01-18		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	51.95	SiO ₂	51.950	0.865	0.485	or	0.023	ol	0.350
TiO ₂	0 745	TiO	0 745	0.009	0.226	sp	0.019	atz	0 247
AlaQa	18 15	Al ₂ O ₂	18 150	0.356	0.449	99	0.010	cox	0 402
Fe ₂ O ₂	2 91	Sigma FeO	6 827	0.095	0 160			opx	01102
FeO	5.13	MaQ	5.570	0.138	0.123			ol	0.137
MgO	5.57	CaO	10.470	0.187	0.914			qtz	0.096
CaO	10.47	Na ₂ O	2.800	0.090	2.343			plg	0.767
Na ₂ O	2.80	K ₂ O	0.519	0.011					
K ₂ O	0.519	Cr ₂ O ₃	0.007	0.000					
Cr_2O_3	0.007								
			Calculation 1	Calculation 2	Calculation 3				Result
SiO	52 72	SiOa	52 720	0.877	0 479	or	0.037	ol	0.310
TiO	0 794	TiO	0 794	0.010	0.227	sn	0.021	otz	0 252
Al ₂ O ₂	17.63	AlaQa	17 630	0.346	0.444	99	0.02.	cnx	0.438
Fe.O.	2.85	Sigma FeO	6 612	0.040	0.140			орл	0.400
FeO	4 94	MaO	5 030	0.032	0.140			ol	0 122
MgO	5.03	CaO	10.020	0.179	0.902			qtz	0.100
CaO	10.02	Na ₂ O	3.010	0.097	2.282			plg	0.778
Na ₂ O	3.01	K ₂ O	0.829	0.018					
K₂O	0.829	Cr ₂ O ₃	0.007	0.000					
Cr ₂ O ₃	0.007								
			Coloulation 1	Coloulation C	Coloulation 2				Desult
SiO	101-20 D-D 01-20	SiO			Calculation 3	07	0.032		C 250
	0 000		02.030	0.079	0.462		0.032	UI at-	0.000
	0.092		17 000	0.011	0.230	sp	0.023	yız opy	0.201
	17.99		17.990	0.353	0.459			срх	0.308
	3.13 5.22	Sigma FeO	1.090	0.099	0.147				0 1 2 4
MaO	4.62	CaO	9.270	0.165	0.837			atz	0.124
CaO	9.27	Na ₂ O	3.280	0.106	2.367			pla	0.777
Na ₂ O	3.28	K₂Ō	0.735	0.016				1.3	
K₂Ō	0.735	Cr ₂ O ₃	0.002	0.000					
Cr ₂ O ₃	0.002	-							

Wt.%	Sample			Calculations					Result
	MVD-B 01-21		Calculation 1	Calculation 2	Calculation 3				
SiO ₂	57.86	SiO ₂	57.860	0.963	0.507	or	0.087	ol	0.201
TiO ₂	1.04	TiO ₂	1.040	0.013	0.323	sp	0.026	qtz	0.417
AI_2O_3	15.5	AI_2O_3	15.500	0.304	0.388			срх	0.382
Fe ₂ O ₃	2.69	Sigma FeO	6.115	0.085	0.078				
FeO	4.52	MgO	2.810	0.070	0.098			ol	0.077
MgO	2.81	CaO Na O	6.330	0.113	0.773			qtz	0.159
	0.33		4.150	0.134	2.032			pig	0.765
	4.15	$R_2 O$	2.060	0.044					
$R_2 U$	2.08	CI_2O_3	0.003	0.000					
$0_{2}0_{3}$	0.003								
	MVD-B 01-22		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	58.3	SiO ₂	58.300	0.970	0.510	or	0.098	ol	0.220
TiO ₂	1.03	TiO ₂	1.030	0.013	0.340	sp	0.025	qtz	0.474
AI_2O_3	15.48	Al ₂ O ₃	15.480	0.304	0.385			срх	0.306
Fe ₂ O ₃	4.17	Sigma FeO	6.135	0.085	0.079			·	
FeO	3.21	MgO	2.350	0.058	0.073			ol	0.078
MgO	2.35	CaO	5.300	0.095	0.717			qtz	0.167
CaO	5.30	Na ₂ O	4.310	0.139	2.037			plg	0.756
Na ₂ O	4.31	K ₂ O	2.360	0.050					
K ₂ O	2.36	Cr ₂ O ₃	0.000	0.000					
Cr ₂ O ₃	0.000								
			Colouistian 1	Colouistion 2	Coloulation 2				Decult
SiO.	WVD-B 01-23 56 20	SiO	Calculation 1			or	0.080	ol	0 291
	0.20		0.200	0.933	0.400	10	0.009	otz	0.201
	17.00		17.000	0.011	0.204	sp	0.025	qız	0.347
	2.21	Sigma Eq.	5 499	0.333	0.422			срх	0.372
	4 15	MgO	3 900	0.070	0.107			ol	0 000
MaO	3.90	CaO	7.410	0.037	0.763			atz	0.033
CaO	7.41	Na ₂ O	3.710	0.120	2.165			plg	0.779
Na ₂ O	3.71	K ₂ O	2.050	0.044					
K ₂ O	2.05	Cr ₂ O ₃	0.012	0.000					
Cr_2O_3	0.012								
0.0	MVD-B 01-24	0.0	Calculation 1	Calculation 2	Calculation 3				Result
SIO ₂	64.33	SIO ₂	64.330	1.071	0.565	or	0.121	Ol	0.135
TiO ₂	0.790	TiO ₂	0.790	0.010	0.435	sp	0.018	qtz	0.686
AI_2O_3	15.13	AI_2O_3	15.130	0.297	0.346			срх	0.179
Fe ₂ O ₃	2.52	Sigma FeO	4.544	0.063	0.043				0.045
FeO MaO	2.89	CaO	3.050	0.026	0.038			IO Sto	0.045
CaO	3.05	Na ₂ O	5 030	0.004	1 904			pla	0.220
Na ₂ O	5.03	K ₂ O	3 220	0.068				P-9	0.121
K ₂ O	3.22	Cr_2O_2	0.001	0.000					
Cr ₂ O ₂	0.001	01203	0.001	0.000					
0.203	0.001								
	MVD-B 01-25		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	55.57	SiO ₂	55.570	0.925	0.512	or	0.063	ol	0.301
TiO ₂	0.866	TiO ₂	0.866	0.011	0.293	sp	0.021	qtz	0.350
AI_2O_3	17.11	AI_2O_3	17.110	0.336	0.400			срх	0.349
Fe_2O_3	2.22	Sigma FeO	6.553	0.091	0.126				
FeO	5.44	MgO	4.410	0.109	0.097			ol	0.118
MgO	4.41	CaO	8.350	0.149	0.837			qtz	0.137
CaO	8.35		3.270	0.106	2.144			plg	0.746
INa ₂ U	3.27	κ ₂ Ο	1.510	0.032					
$r_2 U$	1.51	Ur_2U_3	0.001	0.000					
U_2U_3	0.001								

Wt.%	Sample			Calculations					Result
	MVD-B 01-26		Calculation 1	Calculation 2	Calculation 3				
SiO ₂	51.29	SiO ₂	51.290	0.854	0.430	or	0.044	ol	0.321
TiO ₂	0.958	TiO ₂	0.958	0.012	0.108	sp	0.028	qtz	0.120
AI_2O_3	17.76	AI_2O_3	17.760	0.348	0.507			срх	0.559
Fe ₂ O ₃	2.75	Sigma FeO	6.674	0.093	0.145				
FeO	5.10	MgO	5.160	0.128	0.168			ol	0.119
MgO	5.16	CaO	10.290	0.183	0.902			qtz	0.045
CaO	10.29	Na ₂ O	3.310	0.107	2.425			pig	0.836
Na ₂ O	3.31	K ₂ O	0.900	0.019					
K ₂ O	0.900	Cr_2O_3	0.006	0.000					
Cr_2O_3	0.006								
	MVD-B 01-27		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	54.05	SiO ₂	54.050	0.900	0.485	or	0.053	ol	0.289
TiO ₂	1.31	TiO ₂	1.310	0.016	0.254	sp	0.034	qtz	0.298
AI_2O_3	15.88	Al ₂ O ₃	15.880	0.311	0.417			срх	0.413
Fe_2O_3	4.26	Sigma FeO	8.197	0.114	0.124				
FeO	5.47	MgO	3.860	0.096	0.118			ol	0.114
MgO	3.86	CaO	7.860	0.140	0.854			qtz	0.117
CaO	7.86	Na ₂ O	3.700	0.119	2.171			plg	0.769
Na ₂ O	3.70	K ₂ O	1.220	0.026					
K ₂ O	1.22	Cr ₂ O ₃	0.002	0.000					
Cr_2O_3	0.002								
	MVD-B 01-28		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	56.25	SiO ₂	56.250	0.936	0.487	or	0.087	ol	0.198
TiO	1.31	TiO	1.310	0.016	0.284	SD	0.034	atz	0.366
Al ₂ O ₂	15.78	Al ₂ O ₂	15,780	0.310	0.406	-1		хах	0.437
Fe ₂ O ₂	3.22	Sigma FeO	6.500	0.090	0.077			•	
FeO	4.48	MaO	2.910	0.072	0.113			ol	0.075
MgO	2.91	CaO	6.990	0.125	0.777			qtz	0.138
CaO	6.99	Na ₂ O	3.970	0.128	2.061			plg	0.788
Na ₂ O	3.97	K ₂ O	1.990	0.042					
K ₂ O	1.99	Cr_2O_3	0.003	0.000					
Cr_2O_3	0.003								
	M\/D-B 01-29		Calculation 1	Calculation 2	Calculation 3				Result
SiOa	63.92	SiO	63 920	1 064	0.563	or	0 133	ol	0 158
TiO	0.807	TiO	0.807	0.010	0.428	sp	0.018	atz	0.664
AlaOa	15.05	AlaOa	15 050	0.295	0.331	op	0.010	cnx	0 178
Fe.O.	2 70	Sigma FeO	10.000	0.255	0.051			орл	0.170
FeO	3 16	MaQ	1 230	0.000	0.038			ol	0 055
MgO	1.23	CaO	3.100	0.055	0.645			qtz	0.231
CaO	3.10	Na ₂ O	4.730	0.153	1.854			plg	0.714
Na ₂ O	4.73	K ₂ O	3.540	0.075					
K₂O	3.54	Cr_2O_3	0.001	0.000					
Cr ₂ O ₃	0.001								
			Coloulation 1	Coloulation 0	Coloulation 2				Passilt
SiO	IVIV D-D U'I-3U	SiO				or	0.060		Result
	54.31		54.310	0.904	0.475	or	0.000	UI ant	0.200
	1.01		1.010	0.013	0.233	sp	0.027	qtz	0.276
	0.90	AlgU3	008.01	0.332	0.439			срх	0.404
	2.81	Sigma FeO	6.669	0.093	0.110			ام ا	0 400
MaO	3.04	CaO	3.990 8 810	0.099	0.130			ntz	0.100
CaO	8.81	Na ₂ O	3.520	0.114	2.211			םומ	0.795
Na ₂ O	3.52	K₂O	1 350	0.029				r.9	500
K₂O	1.35	Cr ₂ O ₂	0.007	0.000					
Cr ₂ O ₂	0 007	- 2 - 3	0.001	0.000					
- 2 - 3	0.001								

Wt.%	Sample			Calculations					Result
	MVD-B 00-31		Calculation 1	Calculation 2	Calculation 3				
SiO ₂	58.36	SiO ₂	58.360	0.971	0.496	or	0.103	ol	0.195
TiO ₂	0.906	TiO ₂	0.906	0.011	0.314	sp	0.023	qtz	0.476
AI_2O_3	17.03	Al ₂ O ₃	17.030	0.334	0.424			срх	0.329
Fe ₂ O ₃	2.11	Sigma FeO	5.083	0.071	0.064			•	
FeO	3.87	MgO	2.080	0.052	0.072			ol	0.060
MgO	2.08	CaO	6.080	0.108	0.659			qtz	0.147
CaO	6.08	Na ₂ O	4.270	0.138	2.137			plg	0.793
Na ₂ O	4.27	K ₂ O	2.410	0.051					
K ₂ O	2.41	Cr ₂ O ₃	0.001	0.000					
Cr ₂ O ₃	0.001								
			Colculation 1	Calculation 2	Colculation 2				Popult
SiO.	61 35	SiO.	61 350	1 021	0.538	or	0.087	ol	0 201
TiO	1.00		1 020	0.012	0.000	0	0.007	ota	0.201
	1.02		1.020	0.013	0.378	sp	0.024	qız	0.000
	15.65	Al ₂ O ₃	15.650	0.307	0.393			срх	0.231
Fe ₂ O ₃	3.47	Sigma FeO	6.425	0.089	0.067				
FeO Mao	4.17	MgO	1.430	0.035	0.051			O	0.064
NIGO	1.43	CaO No O	4.270	0.076	0.000			qız	0.101
	4.27		5.050	0.163	2.084			pig	0.755
Na ₂ O	5.05	K ₂ U	2.210	0.047					
K ₂ O	2.21	Cr_2O_3	0.000	0.000					
Cr_2O_3	0.000								
	MVD-B 00-33		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	61.79	SiO ₂	61.790	1.028	0.555	or	0.087	ol	0.204
TiO ₂	1.02	TiO ₂	1.020	0.013	0.404	sp	0.023	qtz	0.607
AI_2O_3	15.73	Al ₂ O ₃	15.730	0.309	0.376			срх	0.188
Fe ₂ O ₃	4.27	Sigma FeO	6.470	0.090	0.068				
FeO	3.50	MaO	1.380	0.034	0.042			ol	0.067
MgO	1.38	CaO	4.190	0.075	0.666			qtz	0.198
CaO	4.19	Na ₂ O	4.870	0.157	2.043			plg	0.736
Na ₂ O	4.87	K ₂ O	2.280	0.048					
K₂O	2.28	Cr ₂ O ₃	0.000	0.000					
Cr ₂ O ₃	0.000								
			Coloulation 1	Coloulation 2	Coloulation 2				Popult
80	МVD-D 00-34 64.06	SiO				or	0.088	ol	0 162
510 ₂	04.00	5iO ₂	04.000	0.011	0.000	0	0.000	ota	0.102
	0.070		0.870	0.011	0.456	sp	0.019	Чız	0.700
	15.60		15.600	0.306	0.352			срх	0.139
Fe_2O_3	2.67	Sigma FeO	5.113	0.071	0.053				0.054
FeO	3.4	MgO	1.240	0.031	0.030			0I ata	0.054
NigO CaO	1.24	Na O	3.040	0.005	0.000			yız pla	0.232
	3.04		4.900	0.160	1.972			pig	0.714
	4.96	K ₂ U	2.440	0.052					
K ₂ O	2.44	Cr_2O_3	0.000	0.000					
Cr_2O_3	0.000								
	MVD-B 00-35		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	61.44	SiO ₂	61.440	1.023	0.506	or	0.141	ol	0.177
TiO ₂	0.827	TiO ₂	0.827	0.010	0.332	sp	0.020	qtz	0.573
Al_2O_3	16.81	AI_2O_3	16.810	0.330	0.406			срх	0.249
Fe ₂ O ₃	3.78	Sigma FeO	4.680	0.065	0.051				
FeO	1.91	MgO	1.290	0.032	0.048			ol	0.050
MgO	1.29	CaO	4.310	0.077	0.580			qtz	0.161
CaO	4.31	Na ₂ O	4.750	0.153	2.060			plg	0.789
Na ₂ O	4.75	K ₂ O	3.370	0.072					
K ₂ O	3.37	Cr ₂ O ₃	0.001	0.000					
Cr ₂ O ₃	0.001								

Wt.%	Sample			Calculations					Result
	MVD-B 00-36		Calculation 1	Calculation 2	Calculation 3				
SiO ₂	60.00	SiO ₂	60.000	0.999	0.519	or	0.094	ol	0.181
TiO ₂	0.991	TiO ₂	0.991	0.012	0.357	sp	0.024	qtz	0.508
AI_2O_3	15.21	Al ₂ O ₃	15.210	0.298	0.389			срх	0.311
Fe ₂ O ₃	2.73	Sigma FeO	6.165	0.086	0.064				
FeO	4.54	MgO	1.730	0.043	0.073			ol	0.062
MgO	1.73	CaO	4.790	0.085	0.703			qtz	0.175
CaO	4.79	Na ₂ O	4.780	0.154	2.039			plg	0.762
Na ₂ O	4.78	K ₂ O	2.300	0.049					
K ₂ O	2.30	Cr ₂ O ₃	0.001	0.000					
Cr_2O_3	0.001								
	MVD-B 01-37		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	55.77	SiO ₂	55.770	0.928	0.515	or	0.062	ol	0.293
TiO ₂	0.882	TiO ₂	0.882	0.011	0.309	sp	0.021	qtz	0.379
AI_2O_3	17.00	Al ₂ O ₃	17.000	0.333	0.399			срх	0.328
Fe ₂ O ₃	7.17	Sigma FeO	6.426	0.089	0.119				
FeO	0.840	MgO	4.090	0.101	0.089			ol	0.111
MgO	4.09	CaO	7.970	0.142	0.815			qtz	0.144
CaO	7.97	Na ₂ O	3.380	0.109	2.142			plg	0.744
Na ₂ O	3.38	K ₂ O	1.510	0.032					
K ₂ O	1.51	Cr ₂ O ₃	0.002	0.000					
Cr_2O_3	0.002								
	MVD-B 01-38		Calculation 1	Calculation 2	Calculation 3				Result
SiO ₂	56.92	SiO ₂	56.920	0.947	0.451	or	0.097	ol	0.288
TiO ₂	0.747	TiO ₂	0.747	0.009	0.205	sp	0.021	qtz	0.395
AI_2O_3	19.88	Al ₂ O ₃	19.880	0.390	0.547			срх	0.317
Fe ₂ O ₃	4.38	Sigma FeO	4.962	0.069	0.075				
FeO	1.69	MgO	1.680	0.042	0.055			ol	0.059
MgO	1.68	CaO	6.970	0.124	0.519			qtz	0.081
CaO	6.97	Na ₂ O	4.560	0.147	2.544			plg	0.861
Na ₂ O	4.56	K ₂ O	2.060	0.044					
K ₂ O	2.06	Cr ₂ O ₃	0.001	0.000					
Cr_2O_3	0.001								

Table ESb. Data used in pseudo-ternary plots of Grove & Baker (1984). Calculation of trend 1 and trend 2 from Hansen (1997) was carried out as in Table E5a.

Fe₂O₃/FeO: 0.15 Thus new Sigma FeO: 0.793*Fe₂O₃+0.881*FeO

TREND 1	MV104	MV105	MV106	MV107	MV108	MV109	MV110	MV111	MV112	MV113	MV114	MV115
0	0.235	0.238	0.243	0.283	0.282	0.380	0.356	0.350	0.346	0.372	0.373	0.392
qtz	0.549	0.545	0.545	0.368	0.389	0.267	0.287	0.287	0.315	0.240	0.249	0.228
cpx	0.216	0.217	0.211	0.349	0.329	0.353	0.357	0.362	0.339	0.388	0.378	0.380
-			7 0 0									
ō	0.00/	0.0/4	0.0/4	0.101	0.101	U. 149	U. 144	U. 145	0.141	U. 104	0. Too	U. 10/
qtz	0.166	0.170	0.167	0.132	0.139	0.105	0.116	0.119	0.129	0.106	0.110	0.097
plg	0.763	0.756	0.759	0.767	0.761	0.746	0.740	0.737	0.730	0.730	0.724	0.736
TREND 2	MV101	MV102	MV103	MV116	MV117	MV118	MV119	MVD121	MVD122	MVD123		
Ы	0.329	0.386	0.292	0.212	0.303	0.329	0.394	0.199	0.198	0.334		
qtz	0.335	0.235	0.329	0.569	0.322	0.242	0.261	0.552	0.551	0.220		
cbX	0.336	0.380	0.379	0.219	0.374	0.429	0.345	0.249	0.252	0.446		
Ы	0.122	0.142	0.111	0.077	0.125	0.138	0.142	0.071	0.071	0.141		
qtz	0.124	0.086	0.124	0.207	0.132	0.101	0.095	0.197	0.198	0.093		
pla	0 753	0 <u>77</u> 0	0 765	0716	0 743	0 761	0 763	0 732	0 731	0 766		

						Aegean arc dat	a a					
Element	normalisation	Crommyonia	Ægina		Methana	Poros		Milos		Kos	Nisyros	
	values	sample C24 1 normalised	sample 136A 1 non	malised	sample 124a 1 normalisec	d sample PO-22 nom	naised	sample MIL 2 normal	ised	normalised	sample N24 4	normalised
አ	120	204 1.7	069	5.8	247 2.1	362	3.0	655	5.5	780 6.5	561	4.7
×	0.15	3.66 24.4	1.33	8.9	0.940 6.3	2.24	14.9	2.74	18.3		1.28	8.5
Rb	2.00	175 87.5	31.0	15.5	28.0 14.0	105	52.5	80.0	40.0	80.0 40.0	30.0	15.0
Ba	20.00	384 19.2	320	16.0	204 10.2	406	20.3	1440	72.0	949 47.5	226	11.3
멉	0.20	14.2 71.0	5.40	27.0	2.80 14.0			10.8	54.0	12.3 61.5	3.20	16.0
Та	0.18	1.06 5.9	0.500	28	0.300 1.7							
qu	3.50	9.00 2.6	5.00	1.4	6.00 1.7	00.6	2.6			10.0 2.9	11.0	3.1
0e	10.00	73.0 7.3	27.0	27	18.0 1.5	47.0	4.7	88.7	8.9	68.0 6.8	33.0	3.3
д	0.12	0.130 1.1	0.140	1.2	0:060	0.130	1.1	0.150	1.3		0.210	1.8
Zr	00.06	173 1.9	102		82.0 0.5	134	1.5	135	1.5	137 1.5	148	1.6
ĩ	2.40	4.90 2.0	2.70	-	2.20	3.50	1.5			2.85 1.2	3.10	0,1
. J.S	3.30	5.40 1.6	3.70	1	2.70 0.8	330	10	4.40	1.3	6.70 2.0	3.80	12
μ	1.50	0.390	0.740	0.5	0.700	0.440	0.3	052.0	0.5		0.960	0.6
· >-	30.00	21.0 0.7	17.0	0.6	22.0 0.7	16.0	0.5	250	0.8	19.0 0.6	18.0	0.6
ዋ	3.40	1.74 0.5	1.48	0.4	2.20 0.6	2.50	0.7	2.90	0.9		2.30	0.7
Reference	Pearce (1983)	Pe-Piper & Fiper (2002)	Pe-Fiper & Fiper (20	(200	Pe-Piper & Piper (2002)	Pe-Fiper & Fiper (200	72)	Barton et al. (1983)		Hansen (1997)	Pe-Fiper & Fipe	r (2002)
		This study				Re	gional a	arc data				
Element	normalisation	Average basalt	Andean basalts	"	Izu-Bonin basalts	Honshu basalts		Marianas basalts		Kuriles basalts	Aeolian ba	salts
	values	11 samples normalised	14 samples non	malised	17 samples normalised	d 5 samples nom	naised	51 samples normal	lised	25 samples normalised	5 samples	normalised
ს გ	120	280 2.3	202	5.9	206 1.7	520	4.3	281	2.3	367 3.1	6/9	5.7
×	0.15	0.700 4.7	1.65	11.0	0.310 2.1	0.950	6.3	0.740	4.9	0.880 5.9	1.34	8.9
Rb	2.00	15.3 7.7	39.65	19.8	3.96 2.0	20.9	10.4	13.3	6.6	18.2 9.1	35.8	17.9
Ba	20.00	139 7.0	526	26.3	109 5.5	243	12.2	123	6.1	203 10.2	515	25.8
Th	0.20	2.80 14.0	5.93	29.7	0.200 1.0	1.54	7.7	0.910	4.6	1.39 7.0	6.88	34.4
Ta	0.18	0.200 1.1	1.80	10.0	0.070 0.4	0.750	4.2	0.450	2.5	0.240 1.3	0.690	3.8
g	3.50	2.70 0.8	20.4	5.8	0.470 0.1	4.34	12	17.1	4.9	3.74 1.1	9.35	2.7
ő	10.00	15.9 1.6	65.0	6.5	6.47 0.6	29.5	2.9	15.3	1.5	20.5 2.1	51.5	5.2
۵	0.12	0.100 0.8	0.360	3.0	0.090 060.0	0.250	2.1	0.320	2.7	0.220 1.8	0.290	2.4
Zr	90.00	74.8 0.8	158	1.8	42.9 0.5	97.5	1.1	81.9	0.9	93.7 1.0	91.0	1:0
Ĩ	2.40	2.00 0.8	3.75	1.6	1.33 0.6	2.65	1.1	2.01	0.8	2.11 0.9	2.32	10
ß	3.30	2.50 0.8	6.21	1.9	2.20 0.7	4.00	12	3.46	1.0	9.41 2.9	4.67	1.4
F	1.50	0.800 0.5	1.42	0.0	0.970 0.6	1.15	0.8	1.11	0.7	1.03 0.7	0.740	0.5
≻	30.00	20.7 0.7	21.8	0.7	21.6 0.7	19.9	0.7	25.2	0.8	23.0 0.8	18.3	0.6
ę	3.40	2.10 0.6	1.94	0.6	2.31 0.7	1.93	0.6	2.33	0.7	2.67 0.8	1.90	0.6
Reference	Pearce (1983)		Davidson et al. (199	8				Bougault et al. (1982)				
			Le oire er ar. (199	2				Diatrick of al (1900)			Derfacini af al	00007
			kraemer et al (199	00)		Churikova et al 700	(2)	Einthetal (1910)		Bailev ef al. (1987)	Prancalanci et a	(100c)
			Stern et al. (1990)	Ì		Gust et al. (1997)		Hole et al. (1984)		Ikeda (1996)	Feccenilo & Wi	(1997)
			Wittenbrink (1997		Taylor & Nesbitt (1996)	Ljike & Stix (200C)		Woodhead (1985)		Takagi et al. (1995)	Rosi et al. (2) () () ()

Table E6. MORB normalisation for spider diagrams plus datasets from the Aegean and regional arcs.

					Aegean arc data				_
Eement	normalisation	Crommyonia	Ægina	Methana	Poros	Mios	Kos	Nisyros	-
	values	sample C24 1 normalised	sample 136A 1 normalised	d sample 124a 1 normalised	d sample PO-22 normalised	sample MIL 2 normalise	d normalised	sample N24 4 normalised	_
S	0.190		1.40 7.4	4 1.30 6.6				1.19 6.3	_
6	2.470	37.0 15	12.0	5 10.0	4				_
Rb	2.30	175 76	31.0 10	3 28.0 15	105 46	56.0 2	4 80.0 35	30.0 13	_
Ba	2.410	384 159	320 13	3 204 8	5 406 168	387 16	1 949 394	226 94	
Th	0.029	14.2 489.7	5.40 186.2	2 2.80 96.6	0	10.4 358	6 12.3 424.1	3.20 110.3	
	0.0074	5 20 702 7	2.00 270.5	0.800 108.					
Та	0.0136	1.06 77.9	0.500 36.6	8 0.300 22.1					
٩Z	0.240	9:00	5.00 27	1 6.00	5 9.00 38	9.00	8 10.0 42	11.0 46	
¥	550	30382 55	11040 20	0 7803 14	4 18594 34	9796 1	8 24074 44	10625 19	
La	0.237	32.0 135	15.2 64.	1 9.40 39.7	7 25.9 109.3	24.6 103	8 49.8 210.1	16.6 70.0	_
Se	0.613	73.0 119	27.0 44	4 18.0 23	9 47.0 77	47.2 77	0 68.0 111	33.0 54	_
ሪ	7.25	204 28	660	5 247 34	4 362 50	326 4	5 780 108	561 77	_
PZ	0.457	33.0 72	15.0 3	3 9.00 20	0 19.3 42.2	20.7 45	3 36.9 80.7		_
д	1080	567 1	611	1 262 0	0 567 1			916 1	_
ßm	0.148	540 36.5	3.70 25.0	0 2.70 18.2	2 3.30 22.3	440 29	7 6.70 45.3	3.80 25.7	_
Zr	3.82	173 45	102 27	7 82.0 27	1 134 35	108 2	8 137 36	148 39	
Ħ	440	2338 5	4436 10	0 4197 10	0 2638 6	2705	6 3012 7	5755 13	
≻	1.57	21.0 13	17.0 17	1 22.0 14	4 16.0 10	23.0	5 19.0 12	18.0 11	_
Reference	McDanough & Sun (1995)	Pe-Piper & Piper (2002)	Pe-Piper & Fiper (2002)	Pe-Piper & Fiper (2002)	Pe-Fiper & Fiper (2002)	Hansen (1997)	Hansen (1997)	Pe-Fiper & Fiper (2002)	
		This study			Regional	arc data			_
Element	normalisation	Averace basalt	Andean basalts	Izu-Bonin basalts	Honshu basalts	Marianas basalts	Kuriles basalts	Aeolian basalts	-
	values	11 samples normalised	14 samples normalised	d 17 samples normalised	d 5 samples normalised	51 samples normalise	d 25 samples normalised	5 samples normalised	_
S	0.190	0.470 2.5	1.16 6.	1 0.380 2.0	0.840 4.4	0.220 1.	2 1.33 7.0	1.74 9.2	-
R P	2.470	5.22 2.1	6.57 2.7	7 2.68 1.	1 4.44 1.8	215 0.	9 3.47 1.4	7.30 3.0	_
Rb	2.30	15.3 6.6	39.6 17.2	2 3.96 1.7	7 20.9 9.1	13.3 5.	8 18.2 7.9	35.8 15.5	_
Ba	2.410	139 57.7	526 218.	109 45.	4 243 100.9	123 51	203 84.4	515 213.8	
Ę	0.029	2.77 95.5	5.93 204.5	5 0.200 6.6	1.54 53.1	0.910 31.	4 1.39 47.9	6.88 237.2	_
D	0.0074	0.840 113.5	1.15 155.	4 0.120 16.2	0.480 64.9	0.370 50	0 0.710 95.9	2.26 305.4	_
Та	0.0136	0.190 14.0	1.80 132.4	4 0.070 5.	1 0.750 55.1	0.450 33.	1 0.240 17.6	0.690 50.7	
٩Z	0.240	2.75 11.5	20.4 84.8	8 0.470 2.0	0 4.34 18.1	17.1 71	1 3.74 15.6	9.35 39.0	_
¥	550	5426 9.9	13697 24.9	9 2573 4.7	7 7886 14.3	6143 11.	2 7305 13.3	11123 20.2	
La	0.237	7 11 30.0	32.0 136.1	1 2.07 8.7	7 10.0 42.2	894 37	7 9.39 39.6	26.1 110.0	
e Ce	0.613	15.9 25.9	65.0 106.0	0 6.47 10.6	29.5 48.1	15.3 24	9 20.5 33.5	51.5 84.0	
5 :	97.7	280 38.6		797	/1// 079 H	85. L87.	9:nc /95 /	6/9 93./	
	1.45/	9.20 20.3	31.6 69.2	2 619 135	0 16.2 35.4	13.9 30	4 / 30 16.1	23.0 23.0	
۵.	1080	434 0.4	1571 1.5	5 303 0.	4 1091 1.0	1396 1.	3 990 0.9	1266 1.2	
ш	0.148	2.52 17.0	6.21 42.0	0 2.20 145	9 4.00 27.0	3.46 23	4 9.41 63.6	4.67 31.6	
Ľ.	3.82	74.8 19.6	158 41.3	3 42.9 11.2	98 25.5	81.9 21.	4 93.7 24.5	91.0 23.8	_
F	440	4924 11.2	8513 19.3	3 5815 13.2	6894 15.7	6654 15.	1 6175 14.0	4436 10.1	_
~	1.57	20.7 13.2	21.8 13.9	9 21.6 13.6	3 19.6 12.5	25.2 16	1 23.0 14.7	18.3 11.6	_
Reference	NicDanough & Sun (1995)		Davidson et al. (1990)			Bougault et al. (1982)			_
			De Silva et al. (1993)			Crawford et al. (1986)			_
			Kraemer (1999)			Lifeticn et al. (19/8)	120020 1- 9	beragnini et al (2005)	_
			Maemer et al. (1999)			Ellow er al. (1997)	bailey et al. (1907)	Francalanci et al. (1990)	
			Sterri et al. (1930)	(3000) # 11-1 (1000)	GUSI CH CH CH (1997)	TURE EL AL (1904)		Peccetilio & VVU (1992)	
	_		Wittenbrink (1997)	Taylor & Nesb# (1995)	LJIKE & SIX (200U)	Woodhead (1989)	Takagi et al. (1995)	Rosi et al. (2000)	_

Table E7. Chondrite normalisation for spider diagrams plus datasets from the Aegean and regional arcs.

orini data set (basaltic rocks only).
ms for the compiled Sa
ation for spider diagra
8. MORB normalise
Table E

Element	normalisation														
	values	san6	normalised	san13	normalised	p2 s80- 276	normalised r	n s82-27 r	normalised s	i138	normalised s	ai 180sk	normalised		
പ്	120	210	,	195	1.6	256	2.1	271	2.3	258	2.2	207	1.7		
¥	0.15	0.810	2.4	0.790	5.3	0.620	4.1	096.0	6.4	0.810	5.4	0.480	3.2		
£	2.00	25.0	12.5	30.0	15.0	16.0	8.0	29.0	14.5	28.0	14.0	17.0	8.5		
Ba	20.00	114	5.7	140	7.0	133	6.7	288	14.4	177	8.0 0.0	76.0	3.8		
Ъ	0.20	3.60	18.0			1.00	5.0	7.00	35.0	4.00	20:0	2.70	13.5		
Та	0.18														
q	3.50					5.00	1.4	4 <u>0</u>	1.1	<u>6.0</u>	1.7	3.00	0.0		
ථ	10.00	18.3	1.8			19.0	1.9	37.0	3.7	27.0	2.7				
ፈ	0.12	0.160	<u>6</u>	0.190	1.6	0.170	1.4	0.080	0.7	0.120	1.0	060.0	0.8		
Z	00.06	95.0	÷	100	1.1	68.0	0.8	86.0	1.0			86.0	1.0		
Ŧ	2.40									3.10	1.3	2.00	0.8		
Sm	3.30	3.10	0.0	_								2.60	0.8		
Ē	1.50	0.870	0.6	0.870	0.6	0.830	0.6	1.03	0.7	0.990	0.7	0.770	0.5		
×	30.00	10.0	0.3	11.0	0.4	26.0	0.9	23.0	0.8	22.0	0.7	17.0	0.6		
æ	3.40	2.40	0.7							2.70	0.8	2.10	0.6		
Reference	Pearce (1983)	Barton et al	(1983)	Barton et a	al. (1985)	Druitt et al.	(1995)	Druitt et al. ((1995)	Hu jsmans	: (1985)	Hu jsmans et a	al. (1986)		
4 m m m m m m m m m m m m m m m m m m m															
Element	normalisation				:								•		[
	values	si 100sk	normal sec	s1/9sK	normalised	si181sk	normalised s	a1825K r	normalised s	1995K	normalised /	4m U1U1	normalised A	m 0004	normalised
പ്	120	3		214	1.8	221	. 80.	212	1.8	234	2.0	223	1.9	186	1.6
¥	0.15	0.780	5.2	0.600	4.0	0.310	2.1	0.660	4.4	0.640	4.3	0.614	4.1	0.490	3.3
£	2.00	23.0	11.5	20.0	10.0	00.6	4.5	22.00	11.0	19.0	9.5	17.0	8.5	14.0	7.0
Ba	20.00	140	7.0	0.67	4.0	0.09	3.0	108	5.4	<u>1</u> 3	6.0	139	7.0	8	5.0
۴	0.20	4.00	20.0	2.70	13.5	1.10	55	3.40	17.0	300	15.0	3.13	15.7	2.44	12.2
. e	0.10	2		i	2	2)	2	2	2000	2		. +	110	190
<u>8</u> 년	3 E0	001	Ť		Ť		00	ω,	*	C 4		2 20	- 0	2 6	0.0
₹ (00.4	3	0.4		0.0	0 C	0.4	- c - c		t c	0.0	0 U 1	8	, c
3,				0.01	0.0	0.21	<u>-</u> (0.U2	0.0	0.0	0.0	0.01	0.0	0.71	<u>.</u>
נוב	0.12	071.0	29		0.8	0.080	C	mi.n	8.0	011.U	9.0	0.108 	0.0	790'N	0.0
Z	00.06	106	17	85.0	0.9	62.0	0.7	93.0	1.0	95.0	1.1	78.1	0.0	0.09	0.8
ΞĮ	2.40	2.70	÷.	2.30	1.0	1.80	0.8	2.30	1.0	2.30	1.0	2.13	0.0	1.95	0.8
Sm	3.30	3.10	0.0	2.60	0.8	2.00	0.6	2.80	0.9	2.90	0.9	2.57	0.8	2.29	0.7
F	1.50	0.920	0.6	0.800	0.5	0.760	0.5	0.820	0.0	0.890	0.6	0.719	0.5	0.756	0.5
×	30.00	19.0	0.0	19.0	0.6	15.0	0.5	19.0	0.6	17.0	0.6	20.6	0.7	20.2	0.7
ዋ	3.40	2.70	0.8	220	0.7	1.70	0.5	2.40	0.7	<u>2</u> 40	0.7	2.14	0.6	2.10	0.6
Reference	Fearce (1983)	Hu, jsmans et a	I. (198E)	Hu jsmans & E	3arton (1989)	Hu jsmans & Ba	irton (1985) F	łu jsmans & Bar	ton (1985) H	łu jsmans & B	arton (1985)	Kann (20	04)	Kann (2	(100
i	:														
Element	nomalisation						-		-						
	values	Am 0006	normalised	Am 0008	normalised	TS0101	nomalised 1	IR 0014 n	normalised b	al 15	normalised a	ap5-Nod-Oia	normalised		
ሪ ነ	120	170	4 I	195	1.6	227	0. C	164	1.4	211	1.8	407	3.4		
∠ i	0.10	0.048	3./	U./41	9-4-0 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0.840	0.0	50 I.	9.9	0.4/0	5.1 1		4 2		
£	2.00	14.0	2.0	21.0	10.5	28.0	14.0	38.0	19.0	10.0	5.0	8.80	4.4		
Ba	20.00	Ő	5.0	128	6.4	166	8.3	158	7.9	91.0	4.6	142	7.1		
Τh	0.20	2.56	12.8	3.74	18.7	5.40	27.0	6.78	33.9	1:00	5.0	1.30	6.5		
Ta	0.18	0.120	0.7	0.190	1.1	0.330	1.8	0.250	4.1	0.250	1.4	0.120	0.7		
q	3.50	2.40	0.7	3.00	0.0	5.10	1.5	4.20	12	4.00	1.1	1.70	0.5		
රී	10.00	12.7	<u></u>	16.4	1.6	23.0	2.3	22.4	2.2			12.6	1.3		
۵.	0.12	0.091	0.8	0.111	6.0	0.144	1.2	0.121	1.0	0.120	1.0	0.077	0.6		
Z	00.06	68.3	8.0 0	86.5	1.0	119	1.3	115	1.3	53.0	0.6	58.0	0.6		
Ŧ	2.40	2.05	0.0	2.39	1.0	3.01	1.3	3.25	1.4	1.70	0.7	1.67	0.7		
Sm	3.30	2.26	0.7	2.71	0.8	3.18	1.0	3.18	1.0			2.26	0.7		
F	1.50	0.795	0.5	0.886	0.6	066.0	0.7	0.904	0.6	0.850	0.6	0.684	0.5		
≻ :	30.00	20.4	0.7	23.4	0.0 1	25.1 25.1	0.8	26.0 2 -0	0.0	11.0	0.4	16.3	0.5		
ج	3.40	2.11	9.0 5 :: 0	240	0.7	2.60	0.8	2.70	0.8	i i i		1.68	0.5		
Kelerence	rearce (1963)	Kallin (20	04)	Känn (2004)	Kann (Z	204)	Kann (∠u	(4)	PO FIDEL & FI	DEF (2UU2)	Cellitter ()	996)		

